题解 P3690 【【模板】Link Cut Tree (动态树)】
博客太长啦!于是将重要的部分留在题解中,LCT的概念、三个基本性质等更多内容可以参考我的博客LCT总结
access(x)
LCT核心操作,也是最难理解的操作。其它所有的操作都是在此基础上完成的。
因为性质3,我们不能总是保证两个点之间的路径是直接连通的(在一个Splay上)。
access即定义为打通根节点到指定节点的实链,使得一条中序遍历以根开始、以指定点结束的Splay出现。
蒟蒻深知没图的痛苦qwq
所以还是来几张图吧。
下面的图片参考YangZhe的论文
有一棵树,假设一开始实边和虚边是这样划分的(虚线为虚边)
那么所构成的LCT可能会长这样(绿框中为一个Splay,可能不会长这样,但只要满足中序遍历按深度递增(性质1)就对结果无影响)
现在我们要
因为性质2,该路径上其它链都要给这条链让路,也就是把每个点到该路径以外的实边变虚。
所以我们希望虚实边重新划分成这样。
然后怎么实现呢?
我们要一步步往上拉。
首先把
为了满足性质2,原来
因为按深度
然后就变成了这样——
我们接着把
原来在
这时候
然后就变成了这样——
只是把根到某个节点的路径拉起来并不能满足我们的需要。更多时候,我们要获取指定两个节点之间的路径信息。
然而一定会出现路径不能满足按深度严格递增的要求的情况。根据性质1,这样的路径不能在一个Splay中。
Then what can we do?
找
代码:
inline int findroot(R x){
access(x); splay(x);
while(c[x][0])pushdown(x),x=c[x][0];
//如要获得正确的原树树根,一定pushdown!详见下方update(关于findroot中pushdown的说明)
splay(x);//保证复杂度
return x;
}
同样利用性质1,不停找左儿子,因为其深度一定比当前点深度小。
split(x,y)
神奇的
split(x,y)定义为拉出
代码
inline void split(int x,int y){
makeroot(x);
access(y);splay(y);
}
x成为了根,那么x到y的路径就可以用
link(x,y)
连一条
代码
inline bool link(int x,int y){
makeroot(x);
if(findroot(y)==x)return 0;//两点已经在同一子树中,再连边不合法
f[x]=y;
return 1;
}
如果题目保证连边合法,代码就可以更简单
inline void link(int x,int y){
makeroot(x);
f[x]=y;
}
cut(x,y)
将
如果题目保证断边合法,倒是很方便。
使
inline void cut(int x,int y){
split(x,y);
f[x]=c[y][0]=0;
pushup(y);//少了个儿子,也要上传一下
}
那如果不一定存在该边呢?
充分利用好Splay和LCT的各种基本性质吧!
正确姿势——先判一下连通性(注意
因为
那么可能
也可能
inline bool cut(int x,int y){
makeroot(x);
if(findroot(y)!=x||f[y]!=x||c[y][0])return 0;
f[y]=c[x][1]=0;//x在findroot(y)后被转到了根
pushup(x);
return 1;
}
如果维护了
inline bool cut(int x,int y){
makeroot(x);
if(findroot(y)!=x||sz[x]>2)return 0;
f[y]=c[x][1]=0;
pushup(x);
return 1;
}
解释一下,如果他们有直接连边的话,
反过来说,如果有其它的点,
其实,还有一些LCT中的Splay的操作,跟我们以往学习的纯Splay的某些操作细节不甚相同。
包括
这些区别之处详见下面的模板题注释。
update(关于findroot中pushdown的说明)
蒟蒻真的一时没注意这个问题。。。。。。Splay根本没学好
找根的时候,当然不能保证Splay中到根的路径上的翻转标记全放掉。
所以最好把pushdown写上。
Candy巨佬的总结对pushdown问题有详细的分析
只不过蒟蒻后来经常习惯这样判连通性(我也不知道怎么养成的)
makeroot(x);
if(findroot(y)==x)//后续省略
这样好像没出过问题,那应该可以证明是没问题的(makeroot保证了x在LCT的顶端,access(y)+splay(y)以后,假如x,y在一个Splay里,那x到y的路径一定全部放完了标记)
导致很久没有发现错误。。。。。。
另外提一下,假如LCT题目在维护连通性的情况中只可能出现合并而不会出现分离的话,其实可以用并查集哦!(实践证明findroot很慢)
这样的例子有不少,比如“维护链上的边权信息”部分的两道题都是的。
甚至听到Julao们说有少量题目还专门卡这个常数。。。。。。XZY巨佬的博客就提到了
update(关于pushdown的说明)
我pushdown和makeroot有时候会这样写,常数小一点
void pushdown(int x){
if(r[x]){
r[x]=0;
int t=c[x][0];
r[c[x][0]=c[x][1]]^=1;
r[c[x][1]=t]^=1;
}
}
void makeroot(int x){
access(x);splay(x);
r[x]^=1;
}
这种写法等于说当x有懒标记时,x的左右儿子还是反的
那么如果findroot里实在要写pushdown,那么这种pushdown就会出现问题(参考cnblogs评论区@ zjp_shadow巨佬的指正)
再次update,蒟蒻发现这种问题还是可以避免的,若用这种pushdown,findroot可以写,这样写就好啦
inline int findroot(int x){
access(x);splay(x);
pushdown(x);
while(lc)pushdown(x=lc);
splay(x);
return x;
}
所以此总结以及下面模板里的pushdown,常数大了一点点,却是更稳妥、严谨的写法
//pushr同上方makeroot部分
void pushdown(int x){
if(r[x]){
if(c[x][0])pushr(c[x][0]);//copy自模板,然后发现if可以不写
if(c[x][1])pushr(c[x][1]);
r[x]=0;
}
}
void makeroot(int x){
access(x);splay(x);
pushr(x);//可以看到两种写法造成makeroot都是不一样的
}
这种写法等于说当x有懒标记时,x的左右儿子已经放到正确的位置了,只是儿子的儿子还是反的
那么这样就不会出问题啦
两种写法差别还确实有点大呢
当题目中维护的信息与左右儿子顺序有关的时候,pushdown如果用这种不严谨写法会是错的
比如[NOI2005]维护数列(这是Splay题)和洛谷P3613 睡觉困难综合征
代码
最基本的LCT操作都在这里,也没有更多额外的复杂操作了,确实很模板。
#include<bits/stdc++.h>
#define R register int
#define I inline void
#define G if(++ip==ie)if(fread(ip=buf,1,SZ,stdin))
#define lc c[x][0]
#define rc c[x][1]
using namespace std;
const int SZ=1<<19,N=3e5+9;
char buf[SZ],*ie=buf+SZ,*ip=ie-1;
inline int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){x*=10;x+=*ip&15;G;}
return x;
}
int f[N],c[N][2],v[N],s[N],st[N];
bool r[N];
inline bool nroot(R x){//判断节点是否为一个Splay的根(与普通Splay的区别1)
return c[f[x]][0]==x||c[f[x]][1]==x;
}//原理很简单,如果连的是轻边,他的父亲的儿子里没有它
I pushup(R x){//上传信息
s[x]=s[lc]^s[rc]^v[x];
}
I pushr(R x){R t=lc;lc=rc;rc=t;r[x]^=1;}//翻转操作
I pushdown(R x){//判断并释放懒标记
if(r[x]){
if(lc)pushr(lc);
if(rc)pushr(rc);
r[x]=0;
}
}
I rotate(R x){//一次旋转
R y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nroot(y))c[z][c[z][1]==y]=x;c[x][!k]=y;c[y][k]=w;//额外注意if(nroot(y))语句,此处不判断会引起致命错误(与普通Splay的区别2)
if(w)f[w]=y;f[y]=x;f[x]=z;
pushup(y);
}
I splay(R x){//只传了一个参数,因为所有操作的目标都是该Splay的根(与普通Splay的区别3)
R y=x,z=0;
st[++z]=y;//st为栈,暂存当前点到根的整条路径,pushdown时一定要从上往下放标记(与普通Splay的区别4)
while(nroot(y))st[++z]=y=f[y];
while(z)pushdown(st[z--]);
while(nroot(x)){
y=f[x];z=f[y];
if(nroot(y))
rotate((c[y][0]==x)^(c[z][0]==y)?x:y);
rotate(x);
}
pushup(x);
}
/*当然了,其实利用函数堆栈也很方便,代替上面的手工栈,就像这样
I pushall(R x){
if(nroot(x))pushall(f[x]);
pushdown(x);
}*/
I access(R x){//访问
for(R y=0;x;x=f[y=x])
splay(x),rc=y,pushup(x);
}
I makeroot(R x){//换根
access(x);splay(x);
pushr(x);
}
int findroot(R x){//找根(在真实的树中的)
access(x);splay(x);
while(lc)pushdown(x),x=lc;
splay(x);
return x;
}
I split(R x,R y){//提取路径
makeroot(x);
access(y);splay(y);
}
I link(R x,R y){//连边
makeroot(x);
if(findroot(y)!=x)f[x]=y;
}
I cut(R x,R y){//断边
makeroot(x);
if(findroot(y)==x&&f[y]==x&&!c[y][0]){
f[y]=c[x][1]=0;
pushup(x);
}
}
int main()
{
R n=in(),m=in();
for(R i=1;i<=n;++i)v[i]=in();
while(m--){
R type=in(),x=in(),y=in();
switch(type){
case 0:split(x,y);printf("%d\n",s[y]);break;
case 1:link(x,y);break;
case 2:cut(x,y);break;
case 3:splay(x);v[x]=y;//先把x转上去再改,不然会影响Splay信息的正确性
}
}
return 0;
}