次小生成树
最小生成树很简单,略过。
重点是次小生成树,假设我们已经求出最小生成树
简单来讲,就是用一条不在最小生成树的边替换掉一条尽可能长的树边,这条树边肯定在
两点间最长路径,可以用 LCA 求解,当然这道题的数据范围直接暴力走也行。我的代码中使用了倍增的 LCA,复杂度
刚刚讲的都是非严格次小生成树,如果要严格,只要排除新加的边和替换的边相等这种情况就好了。
#include <bits/stdc++.h>
#define int long long
using namespace std;
struct edge{
int u, v, w;
bool operator < (const edge &b) const {
return w < b.w;
}
};
struct node {
int v, w;
};
const int N = 105;
const int H = 9;
const int inf = 0x3f3f3f3f3f3f3f3f;
int T;
int n, m;
vector<node> t[N];
edge e[N * N];
bool used[N * N];
int f[15][N];
int h[15][N];
int fa[N];
int dep[N];
int maxx, sec;
void init() {
maxx = sec = 0;
memset(f, 0, sizeof f);
memset(h, 0, sizeof h);
memset(dep, 0, sizeof dep);
memset(used, 0, sizeof used);
maxx = 0, sec = inf;
memset(used, 0, sizeof used);
for (int i = 0; i < N; i++) vector<node>().swap(t[i]);
for (int i = 1; i <= n; i++) fa[i] = i;
}
int get(int x) {return x == fa[x] ? x : fa[x] = get(fa[x]);}
void merge(int x, int y) {
int fx = get(x), fy = get(y);
if (fx != fy) fa[fx] = fy;
}
void dfs(int u, int fa, int d) {
dep[u] = d;
for (int i = 0; i < t[u].size(); i++) {
int v = t[u][i].v, w = t[u][i].w;
if (v != fa) {
f[0][v] = u;
h[0][v] = w;
for (int k = 1; k <= H; k++) {
f[k][v] = f[k - 1][f[k - 1][v]];
h[k][v] = max(h[k - 1][v], h[k - 1][f[k - 1][v]]);
}
dfs(v, u, d + 1);
}
}
}
int calc(int x, int y) {
int ans = 0;
if (dep[x] < dep[y]) swap(x, y);
for (int k = H; k >= 0; k--) {
if (dep[f[k][x]] >= dep[y]) {ans = max(ans, h[k][x]); x = f[k][x];}
}
if (x == y) return ans;
for (int k = H; k >= 0; k--) {
if (f[k][x] != f[k][y]) {
ans = max(ans, max(h[k][x], h[k][y]));
x = f[k][x], y = f[k][y];
}
}
ans = max(ans, max(h[0][x], h[0][y]));
return ans;
}
void kruskal() {
sort(e + 1, e + 1 + m);
for (int i = 1; i <= m; i++) {
int u = e[i].u;
int v = e[i].v;
int w = e[i].w;
if (get(u) != get(v)) {
t[u].push_back({v, w});
t[v].push_back({u, w});
merge(u, v);
maxx += w;
used[i] = 1;
}
}
dfs(1, 0, 1);
for (int i = 1; i <= m; i++) {
if (!used[i]) {
int u = e[i].u, v = e[i].v, w = e[i].w;
sec = min(sec, maxx - calc(u, v) + w);
}
}
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> T;
while (T--) {
cin >> n >> m;
init();
for (int i = 1; i <= m; i++) {
int u, v, w;
cin >> u >> v>> w;
e[i] = {u, v, w};
}
kruskal();
cout << maxx << ' ' << sec << '\n';
}
return 0;
}