题解 P4885 【灭顶之灾】
推式子……瞎搞……想明白细节还是很恶心……果真是MDZZ
考虑对于每一个形如
将
由此可以解出x的值。
显然分别对于所有的信息解方程,最后留下的
考虑对于每个解集如何求交。
由于是一个模意义下的解,
其中解1、2、3分别是解不等式得到的解集区间。显然他们的交集是被红色区域框柱的一部分。如果对左右部分分别求交,得到的区间会是绿色线段。再与解3求交后求并的结果是空集。答案错误。
正确的姿势应该是对每个解维护补集的并集。最后对并集求补集,所有解的交集。如果您不能理解上面的话,请多读几遍画个图。维护答案的方法使用数组存储并集即可,然后按照左端点排序,扫描一遍数组,对于覆盖线段树数为
对于目前的数据这样的代码交上去即可AC。但是需要注意的是这样的算法存在瑕疵。考虑下面的数据:
2 2 2 1
4 4
2 3
1
正确答案显然应该输出
但事实上对于一部分代码这样的数据会输出一个答案3。输出x的解集你会发现计算机算出来的矩阵长这样:
0 1
2 3
4 5
这显然是不合法的,因为他的行数不合要求。但是我们在计算矩阵的时候并没有考虑行数的限制。解决方法很简单,对于所有一定出现在最后一行的数字(即
由此计算出的
Code
在实现中,因为两个1e18相乘会爆long long,
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#ifdef ONLINE_JUDGE
#define putchar(a)\
puts("I am a cheater!");
#endif
#define rg register
#define ci const int
#define cl const long long int
typedef long long int ll;
namespace IO {
char buf[90];
}
template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst=='-') x=-x;
}
template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) x=-x,putchar('-');
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
}
template<typename T>
inline T mmax(const T a,const T b) {if(a>b) return a;return b;}
template<typename T>
inline T mmin(const T a,const T b) {if(a<b) return a;return b;}
template<typename T>
inline T mabs(const T a) {if(a<0) return -a;return a;}
template<typename T>
inline void mswap(T &a,T &b) {
T temp=a;a=b;b=temp;
}
const int maxn = 1000010;
struct Zay {
ll x;int y;
inline bool operator<(const Zay &_others) const {
return this->x < _others.x;
}
};
Zay MU[maxn];
ll n,m,ans,cnt;
int s,q;
__int128 uc,tp;
ll check();
int main() {
qr(n);qr(m);qr(s);qr(q);
rg ll a,b,l1=0,r1=m-1;
uc=n-1;uc*=m;
while(s--) {
a=b=0;qr(a);qr(b);
if((1.0*b)/n > (1.0*m)) {puts("Impossible!");return 0;}
a%=m;
ll tl=((1ll-a)%m+m)%m,tr=((m-b)%m+m)%m;
if(tl <= tr) l1=mmax(l1,tl),r1=mmin(r1,tr);
else {
MU[++cnt]=(Zay) {tr+1,1};
MU[++cnt]=(Zay) {tl-1,-1};
}
tp=b;
if(tp > uc) {MU[++cnt]=(Zay) {m-(int)(tp-uc)+1,1};MU[++cnt]=(Zay) {m+1,-1};}
}
MU[++cnt]=(Zay) {-1,1};MU[++cnt]=(Zay) {l1-1,-1};MU[++cnt]=(Zay) {r1+1,1};MU[++cnt]=(Zay) {m+1,-1};
rg ll k;
std::sort(MU+1,MU+1+cnt);
k=check();
while(q--) {
a=0;qr(a);
a+=k;
if((1.0*a/n) > 1.0*m) continue;
ll _temp=(a-1)/m+1;ans^=_temp;
_temp=(a-1)%m+1;
ans^=_temp;
}
write(ans,'\n',true);
return 0;
}
ll check() {
rg ll k,sum=0,tg=0,i=1,tl=-2;
while(i <= cnt) {
if(tg <= 0) sum+=MU[i].x-1-tl,k=tl;
tl=MU[i].x;
while((i <= cnt) && (MU[i].x == tl)) tg+=MU[i].y,++i;
}
if(!sum) {puts("Impossible!");exit(0);}
else if(sum > 1) {puts("Uncertain!");exit(0);}
else return k+1;
}
Summary
多个区间的交难以维护,可以考虑维护区间补集的并集,最后求补集即为交集。