题解:P12225 [蓝桥杯 2023 国 Java B] 游戏
P12225 [蓝桥杯 2023 国 Java B] 游戏
看没有 ST 表的,写一个。
首先,是 ST 表板子求区间最大最小值,然后对于每个长度为
然后就稍微化简一下就好了:
所以最后只需要记录
时间复杂度
当然,不开那个什么还是会见祖宗的。
#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; i++)
#define rrep(i, r, l) for (int i = r; i >= l; i--)
#define lrep(i, from, nxt) for (int i = from; i; i = nxt)
#define arep(x, s) for (auto &x : s)
#define pb(x) push_back(x)
#define mp(x, y) make_pair(x, y)
#define pqueue priority_queue
#define umap unordered_map
using ll = long long;
int rd() {
int x = 0, f = 1; char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') {
f = -1;
}
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = x * 10 + ch - '0', ch = getchar();
}
return x * f;
}
constexpr int N = 1e5 + 10;
ll n, k, mx[N][25], mn[N][25], lg[N], sp, sq;
int main() {
n = rd(), k = rd();
lg[0] = -1;
rep(i, 1, n) {
mx[i][0] = mn[i][0] = rd();
lg[i] = lg[i / 2] + 1;
}
rep(j, 1, 20) {
rep(i, 1, n - (1 << j) + 1) {
mx[i][j] = max(mx[i][j - 1], mx[i + (1 << (j - 1))][j - 1]);
mn[i][j] = min(mn[i][j - 1], mn[i + (1 << (j - 1))][j - 1]);
}
}
rep(i, 1, n - k + 1) {
int l = i, r = i + k - 1, s = lg[k];
sp += max(mx[l][s], mx[r - (1 << s) + 1][s]);
sq += min(mn[l][s], mn[r - (1 << s) + 1][s]);
}
printf("%.2lf\n", 1.0 * (sp - sq) / (n - k + 1));
return 0;
}
Java 的:
import java.util.*;
import java.io.*;
public class Main {
static final int N = 100010;
static long n, k, sp, sq;
static long[][] mx = new long[N][25];
static long[][] mn = new long[N][25];
static int[] lg = new int[N];
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
n = scanner.nextInt();
k = scanner.nextInt();
lg[0] = -1;
for (int i = 1; i <= n; i++) {
mx[i][0] = mn[i][0] = scanner.nextInt();
lg[i] = lg[i / 2] + 1;
}
for (int j = 1; j <= 20; j++) {
for (int i = 1; i + (1 << j) - 1 <= n; i++) {
mx[i][j] = Math.max(mx[i][j - 1], mx[i + (1 << (j - 1))][j - 1]);
mn[i][j] = Math.min(mn[i][j - 1], mn[i + (1 << (j - 1))][j - 1]);
}
}
for (int i = 1; i <= n - k + 1; i++) {
int l = i, r = i + (int) k - 1, s = lg[(int) k];
sp += Math.max(mx[l][s], mx[r - (1 << s) + 1][s]);
sq += Math.min(mn[l][s], mn[r - (1 << s) + 1][s]);
}
System.out.printf("%.2f\n", 1.0 * (sp - sq) / (n - k + 1));
scanner.close();
}
}
对了,一开始我写单调队列不小心卡了一个最优解。