P4988

· · 题解

题目链接

题意:a_1 = 2a_{n + 1} = \left( \sqrt [k] {a_n - n} + 2 \right) ^ k + n + 1,求最小整数 k 使得 a_n \equiv b \pmod m

\begin{aligned} a_{n + 1} &= \left( \sqrt [k] {a_n - n} + 2 \right) ^ k + n + 1 \\ a_{n + 1} - \left( n +1 \right) &= \left( \sqrt [k] {a_n - n} + 2 \right) ^ k \\ \sqrt [k] {a_{n + 1} - \left( n +1 \right)} &= \sqrt [k] {a_n - n} + 2 \\ \sqrt [k] {a_{n + 1} - \left( n +1 \right)} - \sqrt [k] {a_n - n} &= 2 \end{aligned} \texttt{令 } g \left( x \right) = \sqrt [k] {a_x - x} \begin{aligned} g \left( n + 1 \right) - g \left( n \right) &= 2 \\ g \left( n \right) - g \left( 1 \right) &= 2 \times \left( n - 1 \right) \end{aligned} \begin{aligned} g \left( 1 \right) &= \sqrt [k] {a_1 - 1} = \sqrt [k] {1} = 1 \\ g \left( n \right) &= 2 \times n - 1 \end{aligned} \begin{aligned} \sqrt [k] {a_n - n} &= 2 \times n - 1 \\ a_n - n &= \left( 2 \times n - 1 \right) ^ k \\ a_n &= \left( 2 \times n - 1 \right) ^ k + n \end{aligned} \begin{aligned} a_n &\equiv b \pmod m \\ \left( 2 \times n - 1 \right) ^ k + n &\equiv b \pmod m \\ \left( 2 \times n - 1 \right) ^ k &\equiv b - n \pmod m \end{aligned}