P1408 题解 feecle6418 · 2023-02-08 11:55:22 · 题解 不妨假设对 i,i+1 执行了一次操作,且操作的公因数 d 不是质数,则它可以分解为两个大于 1 的正整数的乘积 p\times q;因为 p,q\ge 2 所以 pq\ge p+q,那不如分别去操作 p,q。所以,每次操作都操作一个质数更优。 把每个数分解质因数,对每个质数分开考虑它的幂次的变化,相当于:每次可以把相邻两个数均减去 1,问最小的操作次数使得任意相邻两个数均不同时 \ge 0,这个从左往右做个 dp 即可。