题解 P5557 【旅行】
解题思路
首先,每个点有且只有一个出边的图构成内向基环森林。
设一共有
明白这两个套路后,这题就简单许多了。
考虑建立倍增数组
因为走到环上时,想一直走必然是绕着这个环转圈,自然想到应该存下每个环的信息(例如大小,上面有哪些点,每个点在何位置等)。
因此对于每个点,我们先走
如何处理询问?还是基于那个引理。如果询问的
时间复杂度:
代码实现
#include <bits/stdc++.h>
inline int read() {
char c; int x; for (c = getchar(); !isdigit(c); c = getchar());
for (x = 0; isdigit(c); c = getchar()) { x = x * 10 + c - '0'; } return x;
}
inline int power(int x, int y, int mod, int res = 1) {
for (; y; y >>= 1, x = 1ll * x * x % mod) {
if (y & 1) { res = 1ll * res * x % mod; }
} return res;
}
const int N = 5e5 + 5, L = 19;
int n, m, q, lgn, e[L][N], bln[N], pos[N];
std::vector<int> cyc[N];
int check(int x, int y) {
if (x == 1) { return 1; }
long long tmp = 1;
for (; y; y--) {
tmp *= x;
if (tmp > n) { return -1; }
} return tmp;
}
int jump(int u, int x) {
for (int i = 0; i <= lgn; i++) {
if (1 << i & x) { u = e[i][u]; }
} return u;
}
int main() {
n = read(); lgn = log(n) / log(2) + 1e-7;
for (int i = 1; i <= n; i++) {
e[0][i] = read(); bln[i] = -1;
}
for (int j = 1; j <= lgn; j++) {
for (int i = 1; i <= n; i++) {
e[j][i] = e[j - 1][e[j - 1][i]];
}
}
for (int i = 1; i <= n; i++) {
int u = e[lgn][e[lgn][i]];
if (bln[u] == -1) {
for (; bln[u] == -1; u = e[0][u]) {
bln[u] = m; pos[u] = cyc[m].size();
cyc[m].push_back(u);
}
m++;
}
}
for (q = read(); q; q--) {
int u = read(), x = read(), y = read(), z = check(x, y);
if (z == -1) {
u = jump(u, n);
int s = cyc[bln[u]].size();
z = (power(x, y, s) + s - n % s) % s;
u = cyc[bln[u]][(pos[u] + z) % s];
} else {
u = jump(u, z);
} printf("%d\n", u);
}
return 0;
}