\because \lfloor\dfrac{n}{l}\rfloor=\lfloor\dfrac{n}{r}\rfloor \leq \dfrac{n}{r}\therefore r \le \dfrac{n}{\lfloor\dfrac{n}{l}\rfloor}\therefore r = \lfloor\dfrac{n}{\lfloor\dfrac{n}{l}\rfloor}\rfloor
至此,左端点和右端点全部求出,可以 O(1) 统计块内答案。
题解
显然 a \bmod b = a - b \lfloor\dfrac{a}{b}\rfloor。那么我们开始推式子: