一阶微分方程的迭代求法

· · 题解

其实这个科技在 2017 年就被神仙们所熟知了,这里应 兔兔 的要求,造了道模板题,来洛谷普及一下,,求轻喷。

任意一阶微分方程都能写成这种形式:

F'(x)\equiv G(F(x)) \pmod{x^n}

在洛谷模板题中,G(F(x))=A(x)\text e^{F(x)-1}+B(x)G'(F(x))=A(x)\text e^{F(x)-1}

假设已经求得 F_0(x),在前 \lceil n/2 \rceil 项满足上式;类比普通牛顿迭代的做法,在 F_0(x) 处做 Taylor 展开后取前两项,有:

F'(x) \equiv G(F_0(x))+G'(F_0(x))(F(x)-F_0(x)) \pmod{x^n}

(后面的项在模 x^n 下为零,当然可以忽略)

我们希望把带 F(x) 的项全都移到一边来

F'(x)-G'(F_0(x))F(x) \equiv G(F_0(x))-G'(F_0(x))F_0(x) \pmod{x^n}

如果能构造一个 P(x),使得两边同乘 P(x) 后,左边变成 (F(x)P(x))' 的话:

F(x) \equiv \frac{1}{P(x)} \left( \int P(x)(G(F_0(x))-G'(F_0(x))F_0(x)) \text dx +1\right)\pmod{x^n}

右边那个 +1 是因为,这样积分漏了一项,补回去就好了。
注意右边的 F_0(x) 都是我们提前算好的,所以就能直接迭代......了?

啊,好像忘了说 P(x) 应该怎么构造,其实就是:

(F(x)P(x))'=F'(x)P(x)+P'(x)F(x)

对比一下 P(x)F'(x)-P(x)G'(F_0(x))F(x) 的式子,不难发现我们要求的就是

P'(x)=-P(x)G'(F_0(x)) (\ln P(x))'=-G'(F_0(x)) P(x) = \exp \left( \int -G'(F_0(x)) \text dx \right)

直接做就好了。常数奇大无比,完全打不过分治 fft

代码为了好写,没怎么卡常,仅供参考。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 262147
#define ll long long
#define reg register
#define p 998244353
using namespace std;

inline int add(const int& x,const int& y){ return x+y>=p?x+y-p:x+y; }
inline int dec(const int& x,const int& y){ return x<y?x-y+p:x-y; }

inline void read(int &x){
    x = 0;
    char c = getchar();
    while(c<'0'||c>'9') c = getchar();
    while(c>='0'&&c<='9'){
        x = (x<<3)+(x<<1)+(c^48);
        c = getchar();
    }
}

void print(int x){
    if(x>9) print(x/10);
    putchar(x%10+'0');
}

inline int power(int a,int t){
    int res = 1;
    while(t){
        if(t&1) res = (ll)res*a%p;
        a = (ll)a*a%p;
        t >>= 1;
    }
    return res;
}

int siz;
int rev[N],rt[N],inv[N];

void init(int n){
    int lim = 1;
    while(lim<=n) lim <<= 1,++siz;
    for(reg int i=0;i!=lim;++i) rev[i] = (rev[i>>1]>>1)|((i&1)<<(siz-1));
    int w = power(3,(p-1)>>siz);
    inv[1] = rt[lim>>1] = 1;
    for(reg int i=(lim>>1)+1;i!=lim;++i) rt[i] = (ll)rt[i-1]*w%p;
    for(reg int i=(lim>>1)-1;i;--i) rt[i] = rt[i<<1];
    for(reg int i=2;i<=n;++i) inv[i] = (ll)(p-p/i)*inv[p%i]%p;
}

inline void dft(int *f,int n){
    static unsigned long long a[N];
    reg int x,shift = siz-__builtin_ctz(n);
    for(reg int i=0;i!=n;++i) a[rev[i]>>shift] = f[i];
    for(reg int mid=1;mid!=n;mid<<=1)
    for(reg int j=0;j!=n;j+=(mid<<1))
    for(reg int k=0;k!=mid;++k){
        x = a[j|k|mid]*rt[mid|k]%p;
        a[j|k|mid] = a[j|k]+p-x;
        a[j|k] += x;
    }
    for(reg int i=0;i!=n;++i) f[i] = a[i]%p;
}

inline void idft(int *f,int n){
    reverse(f+1,f+n);
    dft(f,n);
    int x = p-((p-1)>>__builtin_ctz(n));
    for(reg int i=0;i!=n;++i) f[i] = (ll)f[i]*x%p;
}

inline int getlen(int n){
    return 1<<(32-__builtin_clz(n));
}

inline void inverse(const int *f,int n,int *r){
    static int g[N],h[N],st[30];
    memset(g,0,getlen(n<<1)<<2);
    int lim = 1,top = 0;
    while(n){
        st[++top] = n;
        n >>= 1;
    }
    g[0] = 1;
    while(top--){
        n = st[top+1];
        while(lim<=(n<<1)) lim <<= 1;
        memcpy(h,f,(n+1)<<2);
        memset(h+n+1,0,(lim-n)<<2);
        dft(g,lim),dft(h,lim);
        for(reg int i=0;i!=lim;++i) g[i] = g[i]*(2-(ll)g[i]*h[i]%p+p)%p;
        idft(g,lim);
        memset(g+n+1,0,(lim-n)<<2);
    }
    memcpy(r,g,(n+1)<<2);
}

inline void log(const int *f,int n,int *r){
    static int g[N],h[N];
    inverse(f,n,g);
    for(reg int i=0;i!=n;++i) h[i] = (ll)f[i+1]*(i+1)%p;
    h[n] = 0;
    int lim = getlen(n<<1);
    memset(g+n+1,0,(lim-n)<<2);
    memset(h+n+1,0,(lim-n)<<2);
    dft(g,lim),dft(h,lim);
    for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*h[i]%p;
    idft(g,lim);
    for(reg int i=1;i<=n;++i) r[i] = (ll)g[i-1]*inv[i]%p;
    r[0] = 0;
}

inline void exp(const int *f,int n,int *r){
    static int g[N],h[N],st[30];
    memset(g,0,getlen(n<<1)<<2);
    int lim = 1,top = 0;
    while(n){
        st[++top] = n;
        n >>= 1;
    }
    g[0] = 1;
    while(top--){
        n = st[top+1];
        while(lim<=(n<<1)) lim <<= 1;
        memcpy(h,g,(n+1)<<2);
        memset(h+n+1,0,(lim-n)<<2);
        log(g,n,g);
        for(reg int i=0;i<=n;++i) g[i] = dec(f[i],g[i]);
        g[0] = add(g[0],1);
        dft(g,lim),dft(h,lim);
        for(reg int i=0;i!=lim;++i) g[i] = (ll)g[i]*h[i]%p;
        idft(g,lim);
        memset(g+n+1,0,(lim-n)<<2);
    }
    memcpy(r,g,(n+1)<<2);
}

inline void multiply(const int *f,const int *g,int n,int m,int *r,int len){
    static int a[N],b[N];
    int lim = getlen(n+m);
    memcpy(a,f,(n+1)<<2),memcpy(b,g,(m+1)<<2);
    memset(a+n+1,0,(lim-n)<<2),memset(b+m+1,0,(lim-m)<<2);
    dft(a,lim),dft(b,lim);
    for(reg int i=0;i!=lim;++i) a[i] = (ll)a[i]*b[i]%p;
    idft(a,lim);
    memcpy(r,a,(len+1)<<2);
}

inline void solve(const int *a,const int *b,int n,int *r){
    static int f[N],ef[N],gf[N],dgf[N],h[N],q[N],st[30]; // P(x) in this code is h(x)
    int top = 0,lim = getlen(n<<1)<<1;
    memset(f,0,lim<<2);
    while(n){
        st[++top] = n;
        n >>= 1;
    }
    f[0] = 1;
    while(top--){
        n = st[top+1];
        memcpy(ef+1,f+1,n<<2);
        ef[0] = 0;
        exp(ef,n,ef);
        multiply(ef,a,n,n,dgf,n);
        for(reg int i=0;i<=n;++i) gf[i] = add(dgf[i],b[i]);
        for(reg int i=0;i<=n;++i) h[i] = dgf[i]==0?0:p-dgf[i];
        for(reg int i=n;i;--i) h[i] = (ll)h[i-1]*inv[i]%p;
        h[0] = 0;
        exp(h,n,h);
        multiply(dgf,f,n,n,q,n);
        for(reg int i=0;i<=n;++i) q[i] = dec(gf[i],q[i]);
        multiply(q,h,n,n,q,n);
        for(reg int i=n;i;--i) q[i] = (ll)q[i-1]*inv[i]%p;
        q[0] = 1;
        inverse(h,n,h);
        multiply(q,h,n,n,q,n);
        memcpy(f+1,q+1,n<<2);
    }
    memcpy(r,f,(n+1)<<2);
}

int a[N],b[N],f[N];
int n;

int main(){
    read(n);
    init(n<<1);
    for(reg int i=0;i<=n;++i) read(a[i]);
    for(reg int i=0;i<=n;++i) read(b[i]);
    solve(a,b,n,f);
    for(reg int i=0;i<=n;++i) print(f[i]),putchar(' ');
    return 0;   
}