题解 P5401 【[CTS2019]珍珠】

· · 题解

在博客园食用更佳:https://www.cnblogs.com/PinkRabbit/p/CTS2019D1T2.html。

题意简述:

称一个长度为 n,元素取值为 [1,D] 的整数序列是合法的,当且仅当其中能够选出至少 m 对相同元素(不能重复选出元素)。

问合法序列个数。

题解:

设颜色为 c 的珍珠的个数为 \mathrm{cnt}_c,则一个方案合法当且仅当:

\begin{aligned}\sum_{c=1}^{D}\left\lfloor\frac{\mathrm{cnt}_c}{2}\right\rfloor&\ge m\\\sum_{c=1}^{D}\frac{\mathrm{cnt}_c-\mathrm{cnt}_c\bmod 2}{2}&\ge m\\\sum_{c=1}^{D}(\mathrm{cnt}_c-\mathrm{cnt}_c\bmod 2)&\ge 2m\\n-\sum_{c=1}^{D}\mathrm{cnt}_c\bmod 2&\ge 2m\\\sum_{c=1}^{D}\mathrm{cnt}_c\bmod 2&\le n-2m\end{aligned}

先特判 2m\le n-D2m>n 的情况,答案分别为 D^n0

那么假设 \mathrm{odd}_k 为恰好有 k\mathrm{cnt}_c 为奇数的方案数,则最终答案为 \displaystyle\sum_{i=0}^{n-2m}\mathrm{odd}_i

考虑容斥,设 f_k 为至少有 k\mathrm{cnt}_c 为奇数的方案数,若恰好有 j 个奇数,会被相应地统计 \displaystyle\binom{j}{k} 次。

则有:\displaystyle f_i=\sum_{j}\binom{j}{i}\mathrm{odd}_j

根据二项式反演,有:

\begin{aligned}\mathrm{odd}_i&=\sum_{j}(-1)^{j-i}\binom{j}{i}f_j\\&=\sum_{j}(-1)^{i-j}\frac{j!}{i!(j-i)!}f_j\\&=\frac{1}{i!}\sum_{j}\frac{(-1)^{i-j}}{[-(i-j)]!}\cdot j!f_j\end{aligned}

上式是卷积形式,问题转化为求出每一个 f_i

考虑出现次数为奇数的颜色的排列方案数的指数型生成函数:\mathbf{EGF}\{[0,1,0,1,\ldots]\},即 \displaystyle\frac{e^x-e^{-x}}{2},故有:

\begin{aligned}f_k&=\binom{D}{k}n![x^n]\left(\frac{e^x-e^{-x}}{2}\right)^k(e^x)^{D-k}\\&=\binom{D}{k}\frac{n!}{2^k}[x^n]\left(e^x-e^{-x}\right)^k(e^x)^{D-k}\\&=\binom{D}{k}\frac{n!}{2^k}[x^n]\sum_{j=0}^{k}\binom{k}{j}e^{jx}(-e^{-x})^{k-j}e^{(D-k)x}\\&=\binom{D}{k}\frac{n!}{2^k}\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j}[x^n]e^{(D-2(k-j))x}\end{aligned}

考虑 e^{ax}=\mathbf{EGF}\{[1,a,a^2,a^3,\ldots]\},故有 \displaystyle[x^n]e^{ax}=\frac{a^n}{n!},带入上式可得:

\begin{aligned}f_k&=\binom{D}{k}\frac{n!}{2^k}\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j}\frac{(D-2(k-j))^n}{n!}\\&=\frac{D!}{2^k(D-k)!}\sum_{j=0}^{k}\frac{(-1)^{j}(D-2j)^n}{j!}\cdot\frac{1}{(k-j)!}\end{aligned}

显然右边是卷积形式,直接计算即可。计算完 f 再使用卷积计算 \mathrm{odd} 即可。

代码如下:

#include <cstdio>
#include <algorithm>

typedef long long LL;
const int Mod = 998244353, Inv2 = (Mod + 1) / 2;
const int G = 3, iG = 332748118;
const int MS = 1 << 18;

inline int qPow(int b, int e) {
    int a = 1;
    for (; e; e >>= 1, b = (LL)b * b % Mod)
        if (e & 1) a = (LL)a * b % Mod;
    return a;
}

inline int gInv(int b) { return qPow(b, Mod - 2); }

int Inv[MS], Fac[MS], iFac[MS];

inline void Init(int N) {
    Fac[0] = 1;
    for (int i = 1; i < N; ++i) Fac[i] = (LL)Fac[i - 1] * i % Mod;
    iFac[N - 1] = gInv(Fac[N - 1]);
    for (int i = N - 1; i >= 1; --i) iFac[i - 1] = (LL)iFac[i] * i % Mod;
    for (int i = 1; i < N; ++i) Inv[i] = (LL)Fac[i - 1] * iFac[i] % Mod;
}

int Sz, InvSz, R[MS];

inline int getB(int N) { int Bt = 0; while (1 << Bt < N) ++Bt; return Bt; }

inline void InitFNTT(int N) {
    int Bt = getB(N);
    if (Sz == (1 << Bt)) return ;
    Sz = 1 << Bt, InvSz = Mod - (Mod - 1) / Sz;
    for (int i = 1; i < Sz; ++i) R[i] = R[i >> 1] >> 1 | (i & 1) << (Bt - 1);
}

inline void FNTT(int *A, int Ty) {
    for (int i = 0; i < Sz; ++i) if (R[i] < i) std::swap(A[R[i]], A[i]);
    for (int j = 1, j2 = 2; j < Sz; j <<= 1, j2 <<= 1) {
        int wn = qPow(~Ty ? G : iG, (Mod - 1) / j2), w, X, Y;
        for (int i = 0, k; i < Sz; i += j2) {
            for (k = 0, w = 1; k < j; ++k, w = (LL)w * wn % Mod) {
                X = A[i + k], Y = (LL)w * A[i + j + k] % Mod;
                A[i + k] -= (A[i + k] = X + Y) >= Mod ? Mod : 0;
                A[i + j + k] += (A[i + j + k] = X - Y) < 0 ? Mod : 0;
            }
        }
    }
    if (!~Ty) for (int i = 0; i < Sz; ++i) A[i] = (LL)A[i] * InvSz % Mod;
}

inline void PolyConv(int *_A, int N, int *_B, int M, int *_C) {
    static int A[MS], B[MS];
    InitFNTT(N + M - 1);
    for (int i = 0; i < N; ++i) A[i] = _A[i];
    for (int i = N; i < Sz; ++i) A[i] = 0;
    for (int i = 0; i < M; ++i) B[i] = _B[i];
    for (int i = M; i < Sz; ++i) B[i] = 0;
    FNTT(A, 1), FNTT(B, 1);
    for (int i = 0; i < Sz; ++i) A[i] = (LL)A[i] * B[i] % Mod;
    FNTT(A, -1);
    for (int i = 0; i < N + M - 1; ++i) _C[i] = A[i];
}

int D, N, M;
int A[MS], B[MS], Ans;

int main() {
    scanf("%d%d%d", &D, &N, &M);
    if (M + M <= N - D) return printf("%d\n", qPow(D, N)), 0;
    if (M + M > N) return puts("0"), 0;
    Init(D + 1);
    for (int i = 0; i <= D; ++i) A[i] = (LL)qPow((D - i - i + Mod) % Mod, N) * (i & 1 ? Mod - iFac[i] : iFac[i]) % Mod;
    for (int i = 0; i <= D; ++i) B[i] = iFac[i];
    PolyConv(A, D + 1, B, D + 1, A);
    for (int i = 0; i <= D; ++i) A[i] = (LL)A[i] * Fac[D] % Mod * Fac[i] % Mod * iFac[D - i] % Mod * qPow(Inv2, i) % Mod;
    for (int i = 0; i <= D; ++i) B[D - i] = i & 1 ? Mod - iFac[i] : iFac[i];
    PolyConv(A, D + 1, B, D + 1, A);
    for (int i = 0; i <= N - M - M; ++i) Ans = (Ans + (LL)A[D + i] * iFac[i]) % Mod;
    printf("%d\n", Ans);
    return 0;
}