P8097 [USACO22JAN] Farm Updates G
*P8097 [USACO22JAN] Farm Updates G
相比于官方线性 sol,我的做法仅供大家看个乐子。
加边删边考虑线段树分治,用可持久化并查集维护每个叶子结点的联通情况。注意到我们仅在活跃农场之间加边,故若一个农场变得不相关,则它永远不会再相关,因此具有可二分性。对每个农场二分答案即可。
如何判断一个农场与一个活跃农场相连?考虑将农场重标号为其被停用的次序,即第
一次查询的复杂度为
由于询问离线,考虑 整体二分。即对于 时刻区间
线段树上需要从时刻
乍一看,在分治线段树上的移动复杂度似乎不可接受,但是类似决策单调性分治在贡献难算时的复杂度分析, 线段树上每个节点均只会被经过常数次。配合可撤销并查集,视
#include <bits/stdc++.h>
using namespace std;
#define pii pair <int, int>
const int N = 2e5 + 5;
int n, q, num[N], pos[N], ans[N];
int p[N], x[N], y[N]; char op[N];
vector <pii> ed[N << 2];
void build(int l, int r, int x) {
if(l == r) return pos[l] = x, void();
int m = l + r >> 1;
build(l, m, x << 1), build(m + 1, r, x << 1 | 1);
}
void modify(int l, int r, int ql, int qr, int x, pii v) {
if(ql <= l && r <= qr) return ed[x].push_back(v), void();
int m = l + r >> 1;
if(ql <= m) modify(l, m, ql, qr, x << 1, v);
if(m < qr) modify(m + 1, r, ql, qr, x << 1 | 1, v);
}
struct dat {int u, v, omx;};
struct dsu {
int fa[N], sz[N], mx[N];
int find(int x) {return fa[x] == x ? x : find(fa[x]);}
void init() {for(int i = 1; i <= n; i++) fa[i] = i, mx[i] = i, sz[i] = 1;}
dat merge(int u, int v) {
if(sz[u] < sz[v]) swap(u, v);
dat ret = {u, v, mx[u]};
sz[u] += sz[v], fa[v] = u;
if(mx[v] > mx[u]) mx[u] = mx[v];
return ret;
} void undo(dat d) {
sz[d.u] -= sz[d.v], fa[d.v] = d.v, mx[d.u] = d.omx;
}
} f;
int cur = 1, lg[N << 2], top, stc[N];
dat oper[N];
bool ances(int anc, int p) {
if(lg[anc] > lg[p]) return 0;
return anc == (p >> lg[p] - lg[anc]);
}
void move(int aim) {
while(!ances(cur, aim)) {
assert(cur != 1);
while(stc[top] == cur) f.undo(oper[top]), top--;
cur >>= 1;
} while(cur != aim) {
if(ances(cur << 1, aim)) cur <<= 1;
else cur = cur << 1 | 1;
for(pii it : ed[cur]) {
int u = f.find(it.first), v = f.find(it.second);
if(u == v) continue;
stc[++top] = cur, oper[top] = f.merge(u, v);
}
}
}
void solve(int l, int r, vector <int> &arr) {
if(arr.empty()) return;
if(l == r) {for(int it : arr) ans[it] = l; return;}
int m = l + r + 1 >> 1;
move(pos[m]);
vector <int> left, right;
for(int it : arr) {
int val = f.mx[f.find(it)];
if(val <= num[m]) left.push_back(it);
else right.push_back(it);
} solve(l, m - 1, left), solve(m, r, right);
}
int main() {
cin >> n >> q, f.init(), build(1, q, 1);
for(int i = 2; i < N << 2; i++) lg[i] = lg[i >> 1] + 1;
for(int i = 1, cur = 0, ed = 0; i <= q; i++) {
static int st[N]; cin >> op[i] >> x[i];
if(op[i] == 'A') cin >> y[i], st[++ed] = i;
if(op[i] == 'D') p[x[i]] = ++cur; num[i] = cur;
if(i == q) {
for(int j = 1; j <= n; j++) if(!p[j]) p[j] = ++cur;
for(int j = 1; j <= q; j++)
if(op[j] == 'A') x[j] = p[x[j]], y[j] = p[y[j]];
else if(op[j] == 'R') modify(1, q, st[x[j]], j - 1, 1, {x[st[x[j]]], y[st[x[j]]]}), st[x[j]] = -1;
for(int j = 1; j <= ed; j++) if(st[j] != -1)
modify(1, q, st[j], q, 1, {x[st[j]], y[st[j]]});
}
} for(pii it : ed[1]) {
int u = f.find(it.first), v = f.find(it.second);
if(u == v) continue;
stc[++top] = cur, oper[top] = f.merge(u, v);
} vector <int> arr;
for(int i = 1; i <= n; i++) arr.push_back(i);
solve(0, q, arr);
for(int i = 1; i <= n; i++) cout << ans[p[i]] << "\n";
return 0;
}