枫林晚 的博客

枫林晚 的博客

[SCOI2014]方伯伯的商场之旅

posted on 2018-08-23 22:35:15 | under 未分类 |

博客园cnblog链接:[SCOI2014]方伯伯的商场之旅

网上的做法基本都是贪心到1号位置,再容斥。

这里我就写一个不一样的做法。直接就可以得到答案。

(其实是我们学长gzz的想法,我实现了一下)

发现,对于一个数字P,假设钦定最终合并位置是p,

调整的时候,p向左移动一位,代价变化是p及右边所有的数位和-p左边所有数位和。

p向右移动一位,代价变化是p及左边所有数位和-p右边所有数位和。

设最优的位置的数字是x,位置是p,p左边数位和是a,右边是b

那么,一定有不等式:x+a-b>=0 ; x+b-a>=0 就是说,x不论往左往右移动,代价的变化总是增大的。

即:-x<=a-b<=x

所以,如果知道最终填的a-b,和x,p,就可以判断这个p位置填x是不是左边a,右边b的最优解了。

枚举p,x;

伪代码:(cnt是最高位,进制用m,填数用k)

for(p=1~cnt)

  for(x=0~m-1)

    for(i=cnt~1)

   for(a-b=-200~+200)

  设f[i][a-b][0/1]表示,填完第i位,a-b的值,有没有限制情况下,所有符合情况的数移动到p位置所花费的代价。

          g[i][a-b][0/1]表示,f的方案数,即满足情况的数的个数,方便转移。

       if(i==p){

    

    continue;

  }

       for(k=0;k<m;k++){

    if(i<p)

    else

  }

 在i循环完之后,

 for(a-b=-200~+200)

      if(-x<=a-b<x) ret+=f[1][a-b][0/1]

 注意这里是<=和<,因为可能一个数字有两个位置都是最优的合并位置,只能算一遍。

Code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=70;
const int M=22;
const int fix=201;
const int up=402;
ll f[N][405][2];
ll g[N][405][2];
ll L,R;
int m;
ll ansl,ansr;
int a[N],cnt;
ll wrk(){
    ll ret=0;
    for(int p=1;p<=cnt;p++){
       for(int x=0;x<m;x++){
        memset(f,0,sizeof f);
        memset(g,0,sizeof g);
        g[cnt+1][fix][1]=1;
        for(int i=cnt;i>=1;i--){
            for(int j=0;j<=up;j++){
                    if(i==p){
                        if(x<a[i]){
                            if(g[i+1][j][0]) g[i][j][0]+=g[i+1][j][0],f[i][j][0]+=f[i+1][j][0];
                            if(g[i+1][j][1]) g[i][j][0]+=g[i+1][j][1],f[i][j][0]+=f[i+1][j][1];
                        }                       
                        else if(x==a[i]){
                            g[i][j][1]+=g[i+1][j][1],f[i][j][1]+=f[i+1][j][1];
                            g[i][j][0]+=g[i+1][j][0],f[i][j][0]+=f[i+1][j][0];
                        }
                        else{
                            g[i][j][0]+=g[i+1][j][0],f[i][j][0]+=f[i+1][j][0];
                        }
                        continue;
                    }

                for(int k=0;k<m;k++){
                    if(i>p){//before
                        if(j+k>up) continue;

                        if(k<a[i]){
                            g[i][j+k][0]+=g[i+1][j][0],f[i][j+k][0]+=f[i+1][j][0]+(i-p)*k*g[i+1][j][0];
                            g[i][j+k][0]+=g[i+1][j][1],f[i][j+k][0]+=f[i+1][j][1]+(i-p)*k*g[i+1][j][1];
                        }
                        else if(k==a[i]){
                            g[i][j+k][0]+=g[i+1][j][0],f[i][j+k][0]+=f[i+1][j][0]+(i-p)*k*g[i+1][j][0];
                            g[i][j+k][1]+=g[i+1][j][1],f[i][j+k][1]+=f[i+1][j][1]+(i-p)*k*g[i+1][j][1];
                        }
                        else{
                            g[i][j+k][0]+=g[i+1][j][0],f[i][j+k][0]+=f[i+1][j][0]+(i-p)*k*g[i+1][j][0];
                        }
                    }
                    else{//after 
                        if(j-k<0) continue;

                        if(k<a[i]){
                            f[i][j-k][0]+=f[i+1][j][0]+g[i+1][j][0]*(p-i)*k,g[i][j-k][0]+=g[i+1][j][0];
                            f[i][j-k][0]+=f[i+1][j][1]+g[i+1][j][1]*(p-i)*k,g[i][j-k][0]+=g[i+1][j][1];
                        }
                        else if(k==a[i]){
                            f[i][j-k][0]+=f[i+1][j][0]+g[i+1][j][0]*(p-i)*k,g[i][j-k][0]+=g[i+1][j][0];
                            f[i][j-k][1]+=f[i+1][j][1]+g[i+1][j][1]*(p-i)*k,g[i][j-k][1]+=g[i+1][j][1];
                        }
                        else{
                            f[i][j-k][0]+=f[i+1][j][0]+g[i+1][j][0]*(p-i)*k,g[i][j-k][0]+=g[i+1][j][0];
                        }
                    }
                }
            }
        }
            for(int j=0;j<=up;j++){
                if((fix-x<=j)&&(j<x+fix)){
                    ret+=f[1][j][0]+f[1][j][1];         
                }
            }
        }
    }   
    return ret;
}
int main(){
    scanf("%lld%lld",&L,&R);
    scanf("%d",&m);
    L--;
    cnt=0;
    while(L){
        a[++cnt]=L%m;
        L/=m;
    }
    if(cnt==0){
        ansl=0;
    }
    else{
        ansl=wrk();
    }

    cnt=0;
    while(R){
        a[++cnt]=R%m;
        R/=m;
    }
    ansr=wrk();
    printf("%lld",ansr-ansl);
}