CF932E solution

NaCly_Fish

2020-05-01 20:21:30

Solution

~~嗯,你看这群人,才推出 $\Theta(k \log k)$ 就不往下了,真是太逊了~~ 提供一种时间复杂度 $\Theta(k)$ 的做法。 $$\sum_{i=0}^n \binom ni i^k$$ 将 $i^k$ 用第二类 Stirling 数展开 $$=\sum_{i=0}^n \binom ni \sum_{j=1}^k \begin{Bmatrix} k \\ j \end{Bmatrix}i^{\underline j}$$ $$=\sum_{j=1}^k \begin{Bmatrix} k \\ j \end{Bmatrix}j! \sum_{i=0}^n \binom ni \binom ij$$ $$=\sum_{j=1}^k \begin{Bmatrix} k \\ j \end{Bmatrix}j! \sum_{i=0}^n \binom nj \binom{n-j}{i-j}$$ $$=\sum_{j=1}^k \begin{Bmatrix} k \\ j \end{Bmatrix}j! \binom nj \sum_{i=0}^{n-j} \binom{n-j}{i}$$ $$=\sum_{j=1}^k \begin{Bmatrix} k \\ j \end{Bmatrix} j! \binom{n}{j} 2^{n-j}$$ 很多人推到这里就停了,因为一行第二类 Stirling 数可以很容易的用一次卷积计算;但将其进一步展开,就可以做到更优的复杂度。 在 $n > k$ 的时候,原式等于 $$\sum_{j=1}^k \binom nj 2^{n-j} \sum_{i=1}^j \binom jii^k(-1)^{j-i}$$ ~~使用魔法~~ 交换一下求和顺序 $$=\sum_{i=1}^k i^k\sum_{j=i}^k \binom nj\binom ji 2^{n-j}(-1)^{j-i}$$ $$=\sum_{i=1}^k i^k\binom ni \sum_{j=i}^k \binom{n-i}{j-i}2^{n-j}(-1)^{j-i}$$ $$=\sum_{i=1}^k \binom ni i^k 2^{n-i}\sum_{j=0}^{k-i} \binom{n-i}{j} \left( - \frac 12\right)^j$$ 设 $f_i$ 为后面那个和式的值,考虑递推: (为了方便下面表示,设 $w=-0.5$) $$f_{i}-f_{i+1}$$ $$= \left(\sum_{j=0}^{k-i} \binom{n-i}{j} w^j \right)-\left( \sum_{j=0}^{k-i-1} \binom{n-i-1}{j}w^j\right)$$ 把前一个和式中 $j=k-i$ 的项提出来,其他的并进去 $$= \binom{n-i}{k-i}w^{k-i}+ \sum_{j=0}^{k-i-1} \left( \binom{n-i}{j} - \binom{n-i-1}{j}\right) w^j$$ $$=\binom{n-i}{k-i}w^{k-i}+\sum_{j=0}^{k-i-1} \binom{n-i-1}{j-1} w^j$$ $$= \binom{n-i}{k-i}w^{k-i}+w\sum_{j=0}^{k-i-2} \binom{n-i-1}{j}w^j$$ 再把那个和式最后缺的一项补回来 $$=\binom{n-i}{k-i} w^{k-i}+w \left( f_{i+1}-\binom{n-i-1}{k-i-1}w^{k-i-1}\right)$$ $$=\binom{n-i}{k-i} w^{k-i}+wf_{i+1}-\binom{n-i-1}{k-i-1}w^{k-i}$$ $$= \binom{n-i-1}{k-i}w^{k-i}+wf_{i+1}$$ 于是得到递推式 $$f_i=(w+1)f_{i+1} + \binom{n-i-1}{k-i}w^{k-i}$$ 递推处理组合数,再线性筛出 $i^k$,就可以做到严格的 $\Theta(k)$ 了。 ```cpp #pragma GCC optimize ("unroll-loops") #pragma GCC optimize (2) #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #include<cmath> #define N 5007 #define ll long long #define p 1000000007 #define reg register using namespace std; inline int power(int a,int t){ int res = 1; while(t){ if(t&1) res = (ll)res*a%p; a = (ll)a*a%p; t >>= 1; } return res; } int n,m,k,cnt; int f[N],inv[N],pw[N],pr[N>>1],c[N]; int solve1(){ int res = 0; for(reg int i=1;i<=n;++i) res = (res+(ll)c[i]*pw[i])%p; return res; } const int w = 500000003; int solve2(){ int c2,mul,res = 0; mul = c2 = f[k] = 1; for(reg int i=k-1;i;--i){ c2 = (ll)c2*(n-i-1)%p*inv[k-i]%p; mul = (ll)mul*w%p; f[i] = ((ll)c2*mul+(ll)(w+1)*f[i+1])%p; } mul = p-w; for(reg int i=1;i<=k;++i){ res = (res+(ll)pw[i]*c[i]%p*mul%p*f[i])%p; mul = (ll)mul*(p-w)%p; } res = (ll)res*power(2,n)%p; return res; } int main(){ scanf("%d%d%d",&n,&k); c[0] = inv[1] = pw[1] = 1; c[1] = n; for(reg int i=2;i<=k+1;++i){ inv[i] = (ll)(p-p/i)*inv[p%i]%p; c[i] = (ll)c[i-1]*inv[i]%p*(n-i+1)%p; if(!pw[i]){ pr[++cnt] = i; pw[i] = power(i,k); } for(reg int j=1;j<=cnt&&i*pr[j]<=k;++j){ pw[i*pr[j]] = (ll)pw[i]*pw[pr[j]]%p; if(i%pr[j]==0) break; } } if(n<=k+1) printf("%d",solve1()); else printf("%d",solve2()); return 0; } ``` ~~CF1278F 和这题其实是一个做法,双倍经验~~