P8867 题解
只有 B 国炸毁了图的割边,才会使得图不连通,进而可能会导致军营不连通。也就是说,A 国可以随意地看守或不看守不是割边的边。因此想到 边双缩点 后树形 DP。
为什么边双缩点后会形成一棵树呢?
题目保证了给定的图连通,那么缩点后的图也必然连通,而如果有多个“双连通分量”构成了环,就不符合双连通分量的定义了,即这些首尾相连构成环的“双连通分量”应该被划在同一个双连通分量中。
因此,缩点后形成的图连通且无环,也就形成了一棵树。
已经缩了点,再思考:究竟要在缩点后形成的树上求什么?
令
给定一棵无根树,每个结点有
这里假定
令
发现每种状态所涵盖的情况过多,根本不好转移。
这时,有两种思路:
- 增加状态数量。
- 对状态增添限制。
我选择的是后者。
令
在想转移之前,为了防止做无用功,最好先想想该如何统计答案。
对于每个结点
令
特殊地,对于
明确了答案如何统计,接下来考虑转移:
显然地,
考虑每新增一个子节点
若到新增前都还未建造一个军营,则以
若到新增前已经建造过军营,则以
综上,
初始时,
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
constexpr int N = 500100, M = 1000100, MOD = 1e9 + 7;
int n, m, p;
int tot, tot2, head[N], head2[N];
int cnt, top, stk[N], dfn[N], low[N], bel[N];
int deg[N], V[N], E[N], s[N];
bool ins[N];
ll ans, f[N][2];
struct Edge {
int to, nxt;
} e[M << 1], e2[M << 1];
void add(int u, int v) {
e[++tot] = Edge{v, head[u]};
head[u] = tot;
}
void add2(int u, int v) {
e2[++tot2] = Edge{v, head2[u]};
head2[u] = tot2;
}
void tarjan(int u, int fa) {
dfn[u] = low[u] = ++cnt, ins[stk[++top] = u] = 1;
for (int i = head[u], v; i; i = e[i].nxt) {
v = e[i].to;
if (v == fa) continue;
if (!dfn[v]) tarjan(v, u), low[u] = min(low[u], low[v]);
else if (ins[v]) low[u] = min(low[u], dfn[v]);
}
if (dfn[u] == low[u]) {
p++; int x;
do {
// 因为不需要知道每个边双连通分量里都有哪些点,只记录每个点属于哪个边双连通分量即可。
ins[x = stk[top--]] = 0, bel[x] = p;
V[p]++; // 累加该边双连通分量内点数
} while (x != u);
}
}
ll qp(ll base, int e) { // 快速幂
ll res = 1;
while (e) {
if (e & 1) res = res * base % MOD;
base = base * base % MOD;
e >>= 1;
}
return res;
}
void dfs(int u, int fa) { // dfs 计算 s[]
s[u] = E[u];
for (int i = head2[u], v; i; i = e2[i].nxt) {
v = e2[i].to;
if (v == fa) continue;
dfs(v, u); s[u] += s[v] + 1;
}
}
void dp(int u, int fa) { // 树形 DP
for (int i = head2[u], v; i; i = e2[i].nxt) {
v = e2[i].to;
if (v == fa) continue;
dp(v, u);
// 状态转移
f[u][1] = (f[u][1] * (((f[v][0] << 1) + f[v][1]) % MOD) % MOD + f[u][0] * f[v][1] % MOD) % MOD;
f[u][0] = f[u][0] * ((f[v][0] << 1) % MOD) % MOD;
}
// 统计答案
if (u == 1) ans = (ans + f[u][1]) % MOD; // 特判 1 号结点的特殊情况
else ans = (ans + f[u][1] * qp(2, s[1] - s[u] - 1)) % MOD;
}
int main() {
ios::sync_with_stdio(0); cin.tie(nullptr), cout.tie(nullptr);
cin >> n >> m;
while (m--) {
int u, v; cin >> u >> v;
add(u, v), add(v, u);
}
tarjan(1, 0); // 边双缩点
for (int u = 1; u <= n; u++) {
for (int i = head[u], v; i; i = e[i].nxt) {
v = e[i].to;
if (bel[u] != bel[v]) add2(bel[u], bel[v]); // 如果属于两个不同的边双连通分量,则将这两个边双连通分量连边
else E[bel[u]]++; // 否则该双连通分量内边数 + 1
}
}
for (int i = 1; i <= p; i++) {
E[i] >>= 1; // 因为是无向边,每一条边会累加 2 次,故 E[i] 需要除以 2
// 赋初值
f[i][0] = qp(2, E[i]);
f[i][1] = qp(2, V[i] + E[i]) - f[i][0];
}
dfs(1, 0); dp(1, 0);
cout << ans;
return 0;
}
upd on 2022.12.18
感谢 @一只绝帆 指出了一处笔误。
upd on 2023.5.15
针对 @vector 指出的错误修改了部分内容。