题解 CF1466E 【Apollo versus Pan】

· · 题解

\mathcal{Translate}

题目链接

给定 n 和长度为 n 的序列 x,求下面的式子。

\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n (x_i \, \& \, x_j) \cdot (x_j \, | \, x_k) 1 \leq n \leq 5 \cdot 10^5,0 \leq x_i < 2^{60}

\mathcal{Solution}

先交换求和号之后就可以拆位求了。

\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n (x_i \, \& \, x_j) \cdot (x_j \, | \, x_k) \sum_{j=1}^n \sum_{i=1}^n \sum_{k=1}^n (x_i \, \& \, x_j) \cdot (x_j \, | \, x_k) \sum_{j=1}^n \sum_{i=1}^n \left((x_i \, \& \, x_j) \cdot \sum_{k=1}^n (x_j \, | \, x_k)\right) \sum_{j=1}^n \left(\sum_{i=1}^n (x_i \, \& \, x_j)\right) \cdot \left(\sum_{k=1}^n (x_j \, | \, x_k)\right)

先拆位预处理后就能快速计算里面两个式子了。

时间复杂度 \mathcal{O(n\log x_i)}

\mathcal{Code}

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#define ll long long
#define re register
#define int long long
inline int Max(int x, int y) { return x > y ? x : y; }
inline int Min(int x, int y) { return x < y ? x : y; }
inline int Abs(int x) { return x < 0 ? ~x + 1 : x; }
inline int read() {
    int r = 0; bool w = 0; char ch = getchar();
    while(ch < '0' || ch > '9') {
        if(ch == '-') w = 1;
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9') {
        r = (r << 3) + (r << 1) + (ch ^ 48);
        ch = getchar();
    }
    return w ? ~r + 1 : r;
}
#undef int
const int N = 5e5 + 10; 
const ll mod = 1e9 + 7;

int T, n;
ll a[N], sum[N], ans;

signed main() { T = read(); while(T--) {
    n = read();
    for(int i = 1; i <= n; ++i) a[i] = read();
    for(int i = 0; i <= 60; ++i) sum[i] = 0; ans = 0;
    for(int i = 1; i <= n; ++i) {
        for(int j = 0; j <= 60; ++j)
            if((1ll << j) & a[i])
                ++sum[j];
    }
    for(int i = 1; i <= n; ++i) {
        ll sum1 = 0, sum2 = 0;
        for(int j = 0; j <= 60; ++j) {
            ll ss = (1ll << j) % mod;
            if((1ll << j) & a[i]) sum1 += sum[j] * ss % mod,  sum2 += n * ss % mod;
            else sum2 += sum[j] * ss % mod;
            sum1 %= mod, sum2 %= mod;
        }
        ans = (ans + sum1 * sum2 % mod) % mod;
    }
    printf("%lld\n", ans);
}
    return 0;
}