题解 P3834 【【模板】可持久化线段树 1(主席树)】

· · 题解

大家好,我是个毒瘤,我非常喜欢暴力数据结构,于是我就用莫队+分块过了这个题,而且跑的贼快,甚至跑到了最优解的第二页

Solution

发现这个题静态查询资瓷离线,于是考虑莫队。

在这里简单介绍一下莫队:

将所有询问离线后,对原序列分块。按照左端点所在块单调不降排序。当左端点所在块相同时,按照右端点单调排序。

然后用头尾指针指向当前的区间,维护区间内的信息。每两个查询间暴力移动指针。移动指针时每移动一下就维护一次答案。

考虑这么做的复杂度:一共有 O(\sqrt{n})个块,每个块内右端点单调,所以一个块内右端点最多移移动 O(n) 个位置,于是右端点移动 O(n~\sqrt{n})个位置。同理,左端点在一个块内最多移动 O(\sqrt{n}) 次,每次最多移动 O(\sqrt{n}) 个位置,块内移动次数是 O(n) 。一共有 O(\sqrt{n}) 个块,于是左端点移动 O(n~\sqrt{n}) 个位置。于是莫队不计修改和查询的总复杂度为 O(n~\sqrt{n})

维护答案时,最显然的想法是用树状数组维护前缀和,这样单次修改复杂度 O(\log n) ,查询时在树状数组上二分,复杂度 O(\log n) 。修改总复杂度 O(n~\sqrt{n}~\log n) ,查询的总复杂度 O(m~\log n) 。于是发现修改的复杂度过高,查询的复杂度完全不需要这么低,那么可以用分块将修改复杂度将至 O(1) ,查询复杂度升高至 O(\sqrt{n}) 。具体的,离散化后按照权值分块,每个块维护块内元素出现总次数。查询时暴力从第一个块开始扫,累加元素出现总次数,当加入一个块总次数大于 k 时在块内暴力找位置,总复杂度 O(n~\sqrt n)。只开O2最慢的点250ms

Code

#include <cmath>
#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long

typedef long long int ll;

namespace IPT {
    const int L = 10000000;
    char buf[L], *front=buf, *end=buf;
    char GetChar() {
        if (front == end) {
            end = buf + fread(front = buf, 1, L, stdin);
            if (front == end) return -1;
        }
        return *(front++);
    }
}

template <typename T>
inline void qr(T &x) {
    rg char ch = IPT::GetChar(), lst = ' ';
    while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
    while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
    if (lst == '-') x = -x;
}

template <typename T>
inline void ReadDb(T &x) {
    rg char ch = IPT::GetChar(), lst = ' ';
    while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
    while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
    if (ch == '.') {
        ch = IPT::GetChar();
        double base = 1;
        while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
    }
    if (lst == '-') x = -x;
}

namespace OPT {
    char buf[120];
}

template <typename T>
inline void qw(T x, const char aft, const bool pt) {
    if (x < 0) {x = -x, putchar('-');}
    rg int top=0;
    do {OPT::buf[++top] = x % 10 + '0';} while ( x /= 10);
    while (top) putchar(OPT::buf[top--]);
    if (pt) putchar(aft);
}

const int maxn = 200010;

int n, m;
int belong[maxn], MU[maxn], temp[maxn], bk[maxn], block[maxn], rmp[maxn], lc[maxn];

struct Ask {
    int l, r, id, ans, k;
    inline bool operator<(const Ask &_others) const {
        if (belong[this->l] != belong[_others.l]) return this->l < _others.l;
        if (belong[this->l] & 1) return this->r < _others.r;
        return this->r > _others.r;
    }
};
Ask ask[maxn];

void init_hash();
void add(ci&);
void dlt(ci&);

inline bool cmp(const Ask &_a,const Ask &_b) {
    return _a.id < _b.id;
}

int main() {
    freopen("1.in", "r", stdin) ;
    qr(n); qr(m);
    for (rg int i = 1, sn = sqrt(n); i <= n; ++i) if((belong[i] = i / sn) != belong[i-1]) lc[belong[i]] = i;
    for (rg int i = 1; i <= n; ++i) qr(MU[i]);
    init_hash();
    for (rg int i = 1; i <= m; ++i) {
        qr(ask[i].l); qr(ask[i].r); qr(ask[i].k); ask[i].id = i;
    }
    std::sort(ask + 1, ask + 1 + m);
    int prel = ask[1].l, prer = prel - 1;
    for (rg int i = 1; i <= m; ++i) {
        int l = ask[i].l, r = ask[i].r;
        while (prel < l) dlt(prel++);
        while (prel > l) add(--prel);
        while (prer > r) dlt(prer--);
        while (prer < r) add(++prer);
        int _cnt = 0, cur = 0;
        while (_cnt + block[cur] < ask[i].k) _cnt+=block[cur++];
        for (rg int j = lc[cur]; ; ++j) if((_cnt += bk[j]) >= ask[i].k) {
            ask[i].ans = j; break;
        }
    }
    std::sort(ask + 1, ask + 1 + m, cmp);
    for (rg int i = 1; i <= m; ++i) qw(rmp[ask[i].ans], '\n', true);
    return 0;
}

void init_hash() {
    for (rg int i = 1; i <= n; ++i) temp[i] = MU[i];
    std::sort(temp + 1, temp + 1 + n);
    int *ed = std::unique(temp + 1, temp + 1 + n);
    for (rg int i = 1; i <= n; ++i) {
        int k = MU[i];
        rmp[MU[i] = std::lower_bound(temp + 1, ed, MU[i]) - temp] = k;
    }
}

inline void dlt(ci &k) {
    --bk[MU[k]];
    --block[belong[MU[k]]];
}

inline void add(ci &k) {
    ++bk[MU[k]];
    ++block[belong[MU[k]]];
}

对了顺便把主席树代码放上防止有人喷我不自觉

#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long

typedef long long int ll;

namespace IPT {
    const int L = 1000000;
    char buf[L], *front=buf, *end=buf;
    char GetChar() {
        if (front == end) {
            end = buf + fread(front = buf, 1, L, stdin);
            if (front == end) return -1;
        }
        return *(front++);
    }
}

template <typename T>
inline void qr(T &x) {
    rg char ch = IPT::GetChar(), lst = ' ';
    while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
    while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
    if (lst == '-') x = -x;
}

template <typename T>
inline void ReadDb(T &x) {
    rg char ch = IPT::GetChar(), lst = ' ';
    while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
    while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
    if (ch == '.') {
        ch = IPT::GetChar();
        double base = 1;
        while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
    }
    if (lst == '-') x = -x;
}

namespace OPT {
    char buf[120];
}

template <typename T>
inline void qw(T x, const char aft, const bool pt) {
    if (x < 0) {x = -x, putchar('-');}
    rg int top=0;
    do {OPT::buf[++top] = x % 10 + '0';} while ( x /= 10);
    while (top) putchar(OPT::buf[top--]);
    if (pt) putchar(aft);
}

const int maxn = 200010;
const int maxt = 4000010;

int n, m, sz;
int MU[maxn], temp[maxn], rmp[maxn];

struct Tree {
    Tree *ls, *rs;
    int l, r, v, k;
    inline void update() {
        this->v = 0;
        if(this->ls) this->v = this->ls->v;
        if(this->rs) this->v += this->rs->v;
    }
};
Tree *pool[maxt], qwq[maxt], *rot[maxn];
int pltp;

void init_hash();
void buildpool();
void buildzero(Tree*, ci, ci);
void build(Tree*, Tree*, ci, ci, ci);
int ask(Tree*, Tree*, ci);

int main() {
    freopen("1.in", "r", stdin);
    qr(n); qr(m);
    for (rg int i = 1; i <= n; ++i) qr(MU[i]);
    init_hash();
    buildpool();
    rot[0] = pool[pltp--];
    buildzero(rot[0], 1, sz);
    for (rg int i = 1; i <= n; ++i) {
        rot[i] = pool[pltp--];
        build(rot[i-1], rot[i], 1, sz, MU[i]);
    }

    int a, b, c;
    while(m--) {
        a = b = c = 0;
        qr(a); qr(b); qr(c);
        qw(rmp[ask(rot[a-1], rot[b], c)], '\n', true);
    }
    return 0;
}

void init_hash() {
    for (rg int i = 1; i <= n; ++i) temp[i] = MU[i];
    std::sort(temp + 1, temp + 1 + n);
    int *ed = std::unique(temp + 1, temp + 1 + n);
    for (rg int i = 1; i <= n; ++i) {
        int _tp = MU[i];
        rmp[MU[i] = std::lower_bound(temp + 1, ed, MU[i]) - temp] = _tp;
    }
    sz = ed - temp - 1;
}

void buildpool() {
    for (rg int i = 0; i < maxt; ++i) pool[i] = qwq + i;
    pltp = maxt - 1;
}

void buildzero(Tree *u, ci l, ci r) {
    u->l = l; u->r = r;
    if (l == r) return;
    int mid = (l + r) >> 1;
    if (l <= mid) {
        u->ls = pool[pltp--];
        buildzero(u->ls, l, mid);
    }
    if (mid < r) {
        u->rs = pool[pltp--];
        buildzero(u->rs, mid+1, r);
    }
}

void build(Tree *pre, Tree *u, ci l, ci r, ci v) {
    u->l = l; u->r = r;
    if (l == r) {u->v = pre->v + 1;return;}
    int mid = (l + r) >> 1;
    if (v <= mid) {
        u->rs = pre->rs;
        u->ls = pool[pltp--];
        build(pre->ls, u->ls, l, mid, v);
    } else {
        u->ls = pre->ls;
        u->rs = pool[pltp--];
        build(pre->rs, u->rs, mid + 1, r, v);
    }
    u->update();
}

int ask(Tree *pre, Tree *u, ci k) {
    if(u->l == u->r) return u->l;
    int _v = u->ls ? u->ls->v - pre->ls->v : 0;
    return _v < k ? ask(pre->rs, u->rs, k - _v) : ask(pre->ls, u->ls, k);
}

Summary

我爱暴力数据结构!