题解 P5518 【[MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题】

灵乌路空

2020-11-15 07:45:42

Solution

更好的阅读体验:[我的 Blog](https://www.cnblogs.com/luckyblock/p/13975070.html)。 扯一句,题面里将露娜萨(Lunasa)误写成了 Lusana,不人气姐妹连名字都不配拥有( ## 简述 原题面:[Luogu](https://www.luogu.com.cn/problem/P5518) >给定参数 $p$,有 $T$ 组数据,每次给定参数 $A,B,C$,求: >$$\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C}\left(\dfrac{\operatorname{lcm}(i,j)}{\gcd(i,k)}\right)^{f(type)}\pmod p$$ >其中 $f(type)$ 的取值如下: >$$f(type) = \begin{cases} 1 &type = 0\\ i\times j\times k &type = 1\\ \gcd(i,j,k) &type = 2 \end{cases}$$ >$1\le A,B,C\le 10^5$,$10^7\le p\le 1.05\times 10^9$,$p\in \mathbb{P}$,$T=70$。 >2.5S,128MB。 ## 分析 ### 原式 先化下原式,原式等于: $$\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C}\left(\dfrac{i\times j }{\gcd(i,j)\times \gcd(i,k)}\right)^{f(type)}$$ 发现每一项仅与两个变量有关,设: $$\begin{aligned} f_1(a,b,c) &= \prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} i^{f(type)}\\ f_2(a,b,c) &= \prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} \gcd(i,j)^{f(type)} \end{aligned}$$ 发现 $\prod$ 可以随意交换,则原式等价于: $$\dfrac{f_1(a,b,c)\times f_1(b,a,c)}{f_2(a,b,c)\times f_2(a,c,b)}$$ 考虑在 $type$ 取值不同时,如何快速求得 $f_1$ 与 $f_2$。 一共有 $6$ 个需要推导的式子,不妨就叫它们 $1\sim 6$ 面了( --- ### type = 0 $$\begin{aligned} f_1(a,b,c) &= \prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} i\\ f_2(a,b,c) &= \prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} \gcd(i,j) \end{aligned}$$ 对于 1 面,显然有: $$\prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} i = \left(\prod_{i=1}^{a}i\right)^{b\times c}$$ 预处理阶乘 + 快速幂即可,单次计算时间复杂度 $O(\log n)$。 --- 再考虑 2 面,套路地枚举 $\gcd$,显然有: $$\large \begin{aligned} &\prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} \gcd(i,j)\\ =&\left(\prod_{i=1}^{a}\prod_{j=1}^{b}\gcd(i,j)\right)^c\\ =& \left(\prod_{d=1} d^{\left(\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}[\gcd(i,j) = d]\right)}\right)^c \end{aligned}$$ 指数是个套路,可以看这里:[P3455 [POI2007]ZAP-Queries](https://www.luogu.com.cn/problem/P3455)。于是有: $$\begin{aligned} &\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}[\gcd(i,j) = d]\\ =& \sum\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor}[\gcd(i,j) = 1]\\ =& \sum\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor}\sum_{k\mid \gcd(i,j)}\mu (k)\\ =& \sum_{k=1}\mu(k)\left\lfloor\dfrac{a}{kd}\right\rfloor\left\lfloor\dfrac{b}{kd}\right\rfloor \end{aligned}$$ 代回原式,略做处理,则原式等于: $$\large \begin{aligned} &\left(\prod_{d=1} d^{\left(\sum\limits_{k=1}\mu(k)\left\lfloor\frac{a}{kd}\right\rfloor\left\lfloor\frac{b}{kd}\right\rfloor\right)}\right)^c\\ =& \left(\prod_{d=1} \left(d^{\sum\limits_{k=1}\mu(k)}\right)^{\left\lfloor\frac{a}{kd}\right\rfloor\left\lfloor\frac{b}{kd}\right\rfloor}\right)^c\\ =& \prod_{d=1} \left(\prod_{k=1}^{\left\lfloor\frac{n}{d}\right\rfloor}d^{\left(\mu(k)\left\lfloor\frac{a}{kd}\right\rfloor\left\lfloor\frac{b}{kd}\right\rfloor\right)}\right)^c \end{aligned}$$ 像[「SDOI2017」数字表格](https://www.cnblogs.com/luckyblock/p/13966454.html) 一样,考虑枚举 $t=kd$ 和 $d$,则原式等于: $$\large \prod_{t=1}^{n}\left(\left(\prod_{d|t} d^{\mu{\left(\frac{t}{d}\right)}}\right)^{\left\lfloor\frac{a}{t}\right\rfloor\left\lfloor\frac{b}{t}\right\rfloor}\right)^c$$ 设: $$\large g_0(t) = \prod_{d|t}d^{\mu\left(\frac{t}{d}\right)}$$ 线性筛预处理 $\mu$ 后,$g_0(t)$ 可以用埃氏筛预处理,时间复杂度 $O(n\log n)$。再代回原式,原式等于: $$\large \prod_{t=1}^{a}\left(g_0(t)^{\left\lfloor\frac{a}{t}\right\rfloor\left\lfloor\frac{b}{t}\right\rfloor}\right)^c$$ 预处理 $g_0(t)$ 的前缀积和前缀积的逆元,复杂度 $O(n\log n)$。 数论分块 + 快速幂计算即可,单次时间复杂度 $O(\sqrt n\log n)$。 --- ### type = 1 $$\begin{aligned} f_1(a,b,c) &= \prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} i^{i\times j\times k}\\ f_2(a,b,c) &= \prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} \gcd(i,j)^{i\times j\times k} \end{aligned}$$ 考虑 3 面,把 $\prod k$ 扔到指数位置,有: $$\large \prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} i^{i\times j\times k} = \prod_{i=1}^{a}\prod_{j=1}^{b}i^{\left(i\times j\times \sum\limits_{k = 1}^{c} k\right)}$$ 再把 $\prod j$ 也扔到指数位置,引入 $\operatorname{sum}(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$,原式等于: $$\left(\prod_{i=1}^{a}i^i\right)^{\operatorname{sum}(b)\times \operatorname{sum}(c)}$$ 预处理 $i^i$ 的前缀积,复杂度 $O(n\log n)$。 指数可以 $O(1)$ 算出,然后快速幂,单次时间复杂度 $O(\log n)$。 根据费马小定理,指数需要对 $p - 1$ 取模。注意 $p-1$ 不是质数,计算 $\operatorname{sum}$ 时不能用逆元,但乘不爆 `LL`,直接算就行。 --- 再考虑 4 面,发现 $k$ 与 $\gcd$ 无关,则同样把 $\prod k$ 扔到指数位置,则有: $$\large \begin{aligned} &\prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} \gcd(i,j)^{i\times j\times k}\\ =& \left(\prod_{i=1}^a\prod_{j=1}^b\gcd(i,j)^{i\times j}\right)^{\operatorname{sum}(c)} \end{aligned}$$ 套路地枚举 $\gcd$,原式等于: $$\large \left(\prod_{d=1}d^{\left(\sum\limits_{i=1}^a \sum\limits_{j=1}^b i\times j[\gcd(i,j)=d]\right)}\right)^{\operatorname{sum}(c)}$$ 大力化简指数,有: $$\large \begin{aligned} &\sum\limits_{i=1}^a \sum\limits_{j=1}^b i\times j[\gcd(i,j)=d]\\ =& d^2 \sum\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor} \sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor} i\times j[\gcd(i,j)=1\\ =& d^2 \sum\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor} i \sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor} j\sum\limits_{t|\gcd(i,j)}\mu(t)\\ =& d^2 \sum\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor} i \sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor} j\sum\limits_{k|\gcd(i,j)}\mu(k)\\ =& d^2 \sum\limits_{k=1}\mu(k)\sum\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor} i[k|i] \sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor} j[k|j]\\ =& d^2 \sum\limits_{k=1}k^2\mu(k)\sum\limits_{i=1}^{\left\lfloor\frac{a}{kd}\right\rfloor} i\sum\limits_{j=1}^{\left\lfloor\frac{b}{kd}\right\rfloor} j\\ =& d^2\sum\limits_{k=1}k^2\mu(k)\operatorname{sum}{\left(\left\lfloor\frac{a}{kd}\right\rfloor\right)} \operatorname{sum}{\left(\left\lfloor\frac{b}{kd}\right\rfloor\right)}\\ \end{aligned}$$ 指数化不动了,代回原式,原式等于: $$\large \left(\prod_{d=1}d^{\left(d^2\sum\limits_{k=1}k^2\mu(k)\operatorname{sum}{\left(\left\lfloor\frac{a}{kd}\right\rfloor\right)} \operatorname{sum}{\left(\left\lfloor\frac{b}{kd}\right\rfloor\right)}\right)}\right)^{\operatorname{sum}(c)}$$ 同 2 面的情况,先展开一下,再枚举 $t=kd$ 和 $d$,原式等于: $$\large \begin{aligned} &\left(\prod_{d=1}\left(\prod_{k=1}^{\left\lfloor\frac{n}{d}\right\rfloor}d^{\left(d^2 k^2\mu(k)\right)}\right)^{\left(\operatorname{sum}{\left(\left\lfloor\frac{a}{kd}\right\rfloor\right)} \operatorname{sum}{\left(\left\lfloor\frac{b}{kd}\right\rfloor\right)}\right)}\right)^{\operatorname{sum}(c)}\\ =& \prod_{t=1}\left(\left(\prod_{d|t}d^{\left(d^2\left(\frac{t}{d}\right)^2\mu\left(\frac{t}{d}\right)\right)}\right)^{\operatorname{sum}{\left(\left\lfloor\frac{a}{t}\right\rfloor\right)} \operatorname{sum}{\left(\left\lfloor\frac{b}{t}\right\rfloor\right)}}\right)^{\operatorname{sum}(c)}\\ =& \prod_{t=1}\left(\left(\prod_{d|t}d^{\left(t^2\mu\left(\frac{t}{d}\right)\right)}\right)^{\operatorname{sum}{\left(\left\lfloor\frac{a}{t}\right\rfloor\right)} \operatorname{sum}{\left(\left\lfloor\frac{b}{t}\right\rfloor\right)}}\right)^{\operatorname{sum}(c)} \end{aligned}$$ 与二面相同,设: $$\large g_1(t) = \prod_{d|t}d^{\left(t^2\mu\left(\frac{t}{d}\right)\right)}$$ $g_1(t)$ 可以用埃氏筛套快速幂筛出,时间复杂度 $O(n\log^2 n)$。再代回原式,原式等于: $$\prod_{t=1}\left(g_1(t)^{\operatorname{sum}{\left(\left\lfloor\frac{a}{t}\right\rfloor\right)} \operatorname{sum}{\left(\left\lfloor\frac{b}{t}\right\rfloor\right)}}\right)^{\operatorname{sum}(c)}$$ 同样预处理 $g_1(t)$ 的前缀积及其逆元,时间复杂度 $O(n\log n)$。 整除分块 + 快速幂即可,单次时间复杂度 $O(\sqrt n\log n)$。 注意指数的取模。 --- ### type = 2 $$\begin{aligned} f_1(a,b,c) &= \prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} i^{\gcd(i,j,k)}\\ f_2(a,b,c) &= \prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} \gcd(i,j)^{\gcd(i,j,k)} \end{aligned}$$ 考虑 5 面,手段同上,大力反演化简一波,再调换枚举对象,则有: $$\large \begin{aligned} &\prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} i^{\gcd(i,j,k)}\\ =&\prod_{d=1}\prod\limits_{i=1}^{a}i^{\left(\sum\limits_{j=1}^{b}\sum\limits_{k=1}^{c}[\gcd(i,j,k)=d]\right)}\\ =& \prod_{d=1}\prod\limits_{i=1}^{a}i^{\left(\sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor}\sum\limits_{k=1}^{\left\lfloor\frac{c}{d}\right\rfloor}[\gcd(\frac{i}{d},j,k)=1]\right)}\\ =& \prod_{d=1}\prod\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor}(id)^{\left(d\sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor}\sum\limits_{k=1}^{\left\lfloor\frac{c}{d}\right\rfloor}[\gcd(i,j,k)=1]\right)}\\ =& \prod_{d=1}\prod\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor}(id)^{\left(d\sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor}\sum\limits_{k=1}^{\left\lfloor\frac{c}{d}\right\rfloor}\sum\limits_{x|\gcd(i,j,k)}{\mu(x)}\right)}\\ =& \prod_{d=1}\prod\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor}(id)^{\left(d\sum\limits_{x=1}\mu(x)[x|i]\sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor}[x|j]\sum\limits_{k=1}^{\left\lfloor\frac{c}{d}\right\rfloor}[x|k]\right)}\\ =& \prod_{d=1}\prod_{x=1}\prod\limits_{i=1}^{\left\lfloor\frac{a}{d}\right\rfloor}(id)^{\left(d\times \mu(x)[x|i]\sum\limits_{j=1}^{\left\lfloor\frac{b}{d}\right\rfloor}[x|j]\sum\limits_{k=1}^{\left\lfloor\frac{c}{d}\right\rfloor}[x|k]\right)}\\ =& \prod_{d=1}\prod_{x=1}\prod\limits_{i=1}^{\left\lfloor\frac{a}{xd}\right\rfloor}(ixd)^{\left(d\times \mu(x){\left\lfloor\frac{b}{xd}\right\rfloor}{\left\lfloor\frac{c}{xd}\right\rfloor}\right)}\\ =& \prod_{t = 1}\prod_{d|T}\prod_{i=1}^{\left\lfloor\frac{a}{t}\right\rfloor}(it)^{\left(d\times \mu\left(\frac{t}{d}\right){\left\lfloor\frac{b}{t}\right\rfloor}{\left\lfloor\frac{c}{t}\right\rfloor}\right)}\\ =& \prod_{t = 1}\prod_{d|T}\left(t^{\left\lfloor\frac{a}{t}\right\rfloor}\prod_{i=1}^{\left\lfloor\frac{a}{t}\right\rfloor}i\right)^{d\times \mu\left(\frac{t}{d}\right){\left\lfloor\frac{b}{t}\right\rfloor}{\left\lfloor\frac{c}{t}\right\rfloor}}\\ \end{aligned}$$ 引入 $\operatorname{fac}(n) = \prod_{i=1}^{n} i$,再根据枚举对象调整一下指数,原式等于: $$\large \begin{aligned} &\prod_{t = 1}\prod_{d|t}\left(t^{\left\lfloor\frac{a}{t}\right\rfloor}\times \operatorname{fac}\left(\left\lfloor\frac{a}{t}\right\rfloor\right)\right)^{\left(d\times \mu\left(\frac{t}{d}\right){\left\lfloor\frac{b}{t}\right\rfloor}{\left\lfloor\frac{c}{t}\right\rfloor}\right)}\\ =& \prod_{t = 1}\left(\prod_{d|t}\left(t^{\left\lfloor\frac{a}{t}\right\rfloor}\times \operatorname{fac}\left(\left\lfloor\frac{a}{t}\right\rfloor\right)\right)^{d\times \mu\left(\frac{t}{d}\right)}\right)^{{\left\lfloor\frac{b}{t}\right\rfloor}{\left\lfloor\frac{c}{t}\right\rfloor}}\\ =& \prod_{t = 1}\left(\left(t^{\left\lfloor\frac{a}{t}\right\rfloor}\times \operatorname{fac}\left(\left\lfloor\frac{a}{t}\right\rfloor\right)\right)^{\sum\limits_{d|t}d\times \mu\left(\frac{t}{d}\right)}\right)^{{\left\lfloor\frac{b}{t}\right\rfloor}{\left\lfloor\frac{c}{t}\right\rfloor}} \end{aligned}$$ 指数中出现了一个经典的狄利克雷卷积的形式,对其进行反演。 将 $(\operatorname{Id}\ast \mu) (n)= \varphi (n)$ 代入原式,原式等于: $$\large \begin{aligned} &\prod_{t = 1}\left(t^{\left\lfloor\frac{a}{t}\right\rfloor}\times \operatorname{fac}\left(\left\lfloor\frac{a}{t}\right\rfloor\right)\right)^{\varphi(t){\left\lfloor\frac{b}{t}\right\rfloor}{\left\lfloor\frac{c}{t}\right\rfloor}}\\ =& \prod_{t = 1}\left(t^{\varphi(t)\left\lfloor\frac{a}{t}\right\rfloor{\left\lfloor\frac{b}{t}\right\rfloor}{\left\lfloor\frac{c}{t}\right\rfloor}}\times \operatorname{fac}\left(\left\lfloor\frac{a}{t}\right\rfloor\right)^{\varphi(t){\left\lfloor\frac{b}{t}\right\rfloor}{\left\lfloor\frac{c}{t}\right\rfloor}}\right) \end{aligned}$$ 预处理 $t^{\varphi(t)}$ 的前缀积及逆元,阶乘的前缀积及阶乘逆元,$\pmod {p-1}$ 下的 $\varphi(t)$ 的前缀和(指数 ),时间复杂度 $O(n\log n)$。 同样整除分块 + 快速幂即可,单次时间复杂度 $O(\sqrt n\log n)$。 --- 然后是最掉 sans 的 6 面。有 $\gcd(i,j,k) = \gcd(\gcd(i,j), k)$,考虑先枚举 $\gcd(i,j)$,然后套路化式子,则有: $$\large \begin{aligned} &\prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} \gcd(i,j)^{\gcd(i,j,k)}\\ =& \prod_{d=1}\prod_{i=1}^{a}\prod_{j=1}^{b}\prod_{k=1}^{c} [\gcd(i,j)=d] d^{\gcd(d,k)}\\ =& \prod_{d=1} \left(d^{\left(\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b} [\gcd(i,j)=d]\right)}\right)^{\sum\limits_{k=1}^{c}\gcd(d,k)} \end{aligned}$$ 先考虑最外面的指数,这也是个套路,可以参考 [一个例子](https://www.cnblogs.com/luckyblock/p/12654760.html#%E4%BE%8B-1)。用 $\operatorname{Id} = \varphi \ast 1$ 反演,显然有: $$\large \begin{aligned} &\sum\limits_{k=1}^{c}\gcd(d,k)\\ =& \sum\limits_{k=1}^{c}\sum_{x|\gcd(d,k)}\varphi(x)\\ =& \sum_{x=1}\varphi(x)[x|d]\sum_{k=1}^{c}[x|k]\\ =& \sum_{x|d}\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor \end{aligned}$$ 再考虑里面的指数,发现这式子在 2 面已经推了一遍了,于是直接拿过来用,有: $$\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}[\gcd(i,j) = d]=\sum_{y=1}\mu(y)\left\lfloor\dfrac{a}{yd}\right\rfloor\left\lfloor\dfrac{b}{yd}\right\rfloor$$ 将化简后的两个指数代入原式,原式等于: $$\large \begin{aligned} &\prod_{d=1} \left(d^{\left(\sum\limits_{y=1}\mu(y)\left\lfloor\frac{a}{yd}\right\rfloor\left\lfloor\frac{b}{yd}\right\rfloor\right)}\right)^{\sum\limits_{x|d}\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor}\\ =& \prod_{d=1} \left(\prod\limits_{y=1}d^{\left(\mu(y)\left\lfloor\frac{a}{yd}\right\rfloor\left\lfloor\frac{b}{yd}\right\rfloor\right)}\right)^{\sum\limits_{x|d}\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor} \end{aligned}$$ 与 2、4 面同样套路地,考虑枚举 $t=yd$ 和 $d$,再略作调整,原式等于: $$\large \begin{aligned} &\prod_{d=1} \left(\prod\limits_{y=1}d^{\left(\mu(y)\left\lfloor\frac{a}{yd}\right\rfloor\left\lfloor\frac{b}{yd}\right\rfloor\right)}\right)^{\sum\limits_{x|d}\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor}\\ =& \prod_{t=1}\prod_{d|t} d^{\left(\mu\left(\frac{t}{d}\right)\left\lfloor\frac{a}{t}\right\rfloor\left\lfloor\frac{b}{t}\right\rfloor\sum\limits_{x|d}\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\right)}\\ =& \prod_{t=1}\left(\prod_{d|t} d^{\left(\mu\left(\frac{t}{d}\right)\sum\limits_{x|d}\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\right)}\right)^{\left\lfloor\frac{a}{t}\right\rfloor\left\lfloor\frac{b}{t}\right\rfloor}\\ =& \prod_{t=1}\left(\prod_{d|t} \prod_{x|d}d^{\left(\mu\left(\frac{t}{d}\right)\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\right)}\right)^{\left\lfloor\frac{a}{t}\right\rfloor\left\lfloor\frac{b}{t}\right\rfloor} \end{aligned}$$ 发现要同时枚举 $d$ 和 $x$,化不动了。 从题解里学到一个比较神的技巧,考虑把 $d$ 拆成 $x$ 和 $\frac{d}{x}$ 分别计算贡献再相乘,即分别计算下两式: $$\large \begin{aligned} &\prod_{t=1}\left(\prod_{d|t} \prod_{x|d}x^{\left(\mu\left(\frac{t}{d}\right)\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\right)}\right)^{\left\lfloor\frac{a}{t}\right\rfloor\left\lfloor\frac{b}{t}\right\rfloor}\\ &\prod_{t=1}\left(\prod_{d|t} \prod_{x|d}{\left(\frac{d}{x}\right)}^{\left(\mu\left(\frac{t}{d}\right)\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\right)}\right)^{\left\lfloor\frac{a}{t}\right\rfloor\left\lfloor\frac{b}{t}\right\rfloor} \end{aligned}$$ --- 先考虑 $x$ 的情况,首先把枚举 $x$ 调整到最外层。设 $\operatorname{lim}=\max(a,b,c)$,则原式等于: $$\large \begin{aligned} &\prod_{x=1} \prod_{t=1}^{\operatorname{lim}}[x|t]\left(\prod_{d|t} [x|d]{x}^{\left(\mu\left(\frac{t}{d}\right)\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\right)}\right)^{\left\lfloor\frac{a}{t}\right\rfloor\left\lfloor\frac{b}{t}\right\rfloor}\\ =& \prod_{x=1} \prod_{t=1}^{\left\lfloor\frac{\operatorname{lim}}{x}\right\rfloor}\left(\prod_{d|t} {x}^{\left(\mu\left(\frac{tx}{dx}\right)\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\right)}\right)^{\left\lfloor\frac{a}{tx}\right\rfloor\left\lfloor\frac{b}{tx}\right\rfloor}\\ =& \prod_{x=1} \prod_{t=1}^{\left\lfloor\frac{\operatorname{lim}}{x}\right\rfloor}\prod_{d|t} {x}^{\left(\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\left\lfloor\frac{a}{tx}\right\rfloor\left\lfloor\frac{b}{tx}\right\rfloor\mu\left(\frac{t}{d}\right)\right)} \end{aligned}$$ 把 $\prod {t}$ 挪到指数位置,原式等于: $$\large \begin{aligned} &\prod_{x=1} {x}^{\left(\sum\limits_{t=1}^{\left\lfloor\frac{\operatorname{lim}}{x}\right\rfloor}\sum\limits_{d|t}\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\left\lfloor\frac{a}{tx}\right\rfloor\left\lfloor\frac{b}{tx}\right\rfloor\mu\left(\frac{t}{d}\right)\right)}\\ =& \prod_{x=1} {x}^{\left(\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\sum\limits_{t=1}^{\left\lfloor\frac{\operatorname{lim}}{x}\right\rfloor}\left\lfloor\frac{a}{tx}\right\rfloor\left\lfloor\frac{b}{tx}\right\rfloor\sum\limits_{d|t}\mu\left(\frac{t}{d}\right)\right)} \end{aligned}$$ 指数中又出现了一个经典的狄利克雷卷积的形式,对其进行反演。 将 $(\mu \ast 1) (n)= \epsilon (n)=[n=1]$ 代入原式,原式等于: $$\large \begin{aligned} &\prod_{x=1} {x}^{\left(\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\sum\limits_{t=1}^{\left\lfloor\frac{\operatorname{lim}}{x}\right\rfloor}\left\lfloor\frac{a}{tx}\right\rfloor\left\lfloor\frac{b}{tx}\right\rfloor[t=1]\right)}\\ =& \prod_{x=1} {x}^{\left(\varphi(x)\left\lfloor\frac{a}{x}\right\rfloor\left\lfloor\frac{b}{x}\right\rfloor\left\lfloor\frac{c}{x}\right\rfloor\right)} \end{aligned}$$ 得到了一个非常优美的式子,而且发现这个式子是 5 面最终答案的一部分。同 5 面的做法,直接整除分块即可。 --- 再考虑 $\frac{d}{x}$ 的情况,同上先把枚举 $x$ 放到最外层,并调整一下指数,则原式等于: $$\large \begin{aligned} &\prod_{x=1} \prod_{t=1}^{\operatorname{lim}}[x|t]\left(\prod_{d|t} [x|d]{\left(\frac{d}{x}\right)}^{\left(\mu\left(\frac{t}{d}\right)\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\right)}\right)^{\left\lfloor\frac{a}{t}\right\rfloor\left\lfloor\frac{b}{t}\right\rfloor}\\ =& \prod_{x=1} \prod_{t=1}^{\left\lfloor\frac{\operatorname{lim}}{x}\right\rfloor}\left(\prod_{d|tx} [x|d]{\left(\frac{d}{x}\right)}^{\left(\mu\left(\frac{tx}{d}\right)\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor\right)}\right)^{\left\lfloor\frac{a}{tx}\right\rfloor\left\lfloor\frac{b}{tx}\right\rfloor}\\ =& \prod_{x=1} \left(\prod_{t=1}^{\left\lfloor\frac{\operatorname{lim}}{x}\right\rfloor}\left(\prod_{d|tx} [x|d]{\left(\frac{d}{x}\right)}^{\mu\left(\frac{tx}{d}\right)}\right)^{\left\lfloor\frac{a}{tx}\right\rfloor\left\lfloor\frac{b}{tx}\right\rfloor}\right)^{\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor} \end{aligned}$$ 考虑枚举 $dx$,替换原来的 $d$,注意一下这里的倍数关系。原式等于: $$\large \prod_{x=1} \left(\prod_{t=1}^{\left\lfloor\frac{\operatorname{lim}}{x}\right\rfloor}\left(\prod_{d|t}d^{\mu\left(\frac{t}{d}\right)}\right)^{\left\lfloor\frac{a}{tx}\right\rfloor\left\lfloor\frac{b}{tx}\right\rfloor}\right)^{\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor}$$ 发现最内层的式子 $\prod_{d|t}d^{\mu\left(\frac{t}{d}\right)}$,即为二面处理过的 $g_0(t)$。直接代入,原式等于: $$\large \prod_{x=1} \left(\prod_{t=1}^{\left\lfloor\frac{\operatorname{lim}}{x}\right\rfloor}g_0(t)^{\left\lfloor\frac{a}{tx}\right\rfloor\left\lfloor\frac{b}{tx}\right\rfloor}\right)^{\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor}$$ 一个小结论,证明可以看 [这里](https://www.cnblogs.com/luckyblock/p/12654760.html#%E5%BC%95%E7%90%861): $$\forall a,b,c\in \mathbb{Z},\left\lfloor\dfrac{a}{bc}\right\rfloor = \left\lfloor{\dfrac{\left\lfloor\dfrac{a}{b}\right\rfloor}{c}}\right\rfloor$$ 则原式等于: $$\large \prod_{x=1} \left(\prod_{t=1}^{\left\lfloor\frac{\operatorname{lim}}{x}\right\rfloor}g_0(t)^{\left\lfloor\frac{\left\lfloor\frac{a}{x}\right\rfloor}{t}\right\rfloor\left\lfloor\frac{\left\lfloor\frac{b}{x}\right\rfloor}{t}\right\rfloor}\right)^{\varphi(x)\left\lfloor\frac{c}{x}\right\rfloor}$$ 于是可以先对外层整除分块,再对内层整除分块。 然后就做完了,哈哈哈。 ## 实现 一些实现上的小技巧: - 逆元能预处理就预处理。 - 注意对指数取模,模数为 $p-1$。 ```cpp //知识点:莫比乌斯反演 /* By:Luckyblock 用了比较清晰易懂的变量名,阅读体验应该会比较好。 vsc 的自动补全真是太好啦! */ #include <algorithm> #include <cctype> #include <cstdio> #include <cstring> using std::min; using std::max; #define LL long long const int Lim = 1e5; const int kN = 1e5 + 10; //============================================================= LL A, B, C, mod, ans; int T, p_num, p[kN]; bool vis[kN]; LL mu[kN], phi[kN], fac[kN], g[2][kN]; LL sumphi[kN], prodt_phi[kN], prodi_i[kN], prodg[2][kN]; LL inv[kN], inv_fac[kN], inv_prodt_phi[kN], inv_prodg[2][kN]; //============================================================= inline int read() { int f = 1, w = 0; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') f = -1; for (; isdigit(ch); ch = getchar()) { w = (w << 3) + (w << 1) + (ch ^ '0'); } return f * w; } void Chkmax(int &fir_, int sec_) { if (sec_ > fir_) fir_ = sec_; } void Chkmin(int &fir_, int sec_) { if (sec_ < fir_) fir_ = sec_; } LL QPow(LL x_, LL y_) { x_ %= mod; y_ %= mod - 1; LL ret = 1; for (; y_; y_ >>= 1ll) { if (y_ & 1) ret = ret * x_ % mod; x_ = x_ * x_ % mod; } return ret; } LL Inv(LL x_) { return QPow(x_, mod - 2); } LL Sum(LL n_) { return ((n_ * (n_ + 1ll)) / 2ll) % (mod - 1); } void Euler() { vis[1] = true, mu[1] = phi[1] = 1; //初值 for (int i = 2; i <= Lim; ++ i) { if (! vis[i]) { p[++ p_num] = i; mu[i] = -1; phi[i] = i - 1; } for (int j = 1; j <= p_num && i * p[j] <= Lim; ++ j) { vis[i * p[j]] = true; if (i % p[j] == 0) { mu[i * p[j]] = 0; phi[i * p[j]] = phi[i] * p[j]; break; } mu[i * p[j]] = -mu[i]; phi[i * p[j]] = phi[i] * (p[j] - 1); } } } void Prepare() { Euler(); inv[1] = fac[0] = prodt_phi[0] = prodi_i[0] = 1; for (int i = 1; i <= Lim; ++ i) { g[0][i] = g[1][i] = 1; fac[i] = 1ll * fac[i - 1] * i % mod; sumphi[i] = (sumphi[i - 1] + phi[i]) % (mod - 1); prodi_i[i] = prodi_i[i - 1] * QPow(i, i) % mod; if (i > 1) inv[i] = (mod - mod / i) * inv[mod % i] % mod; prodt_phi[i] = prodt_phi[i - 1] * QPow(i, phi[i]) % mod; inv_prodt_phi[i] = Inv(prodt_phi[i]); } for (int d = 1; d <= Lim; ++ d) { for (int j = 1; d * j <= Lim; ++ j) { int t = d * j; if (mu[j] == 1) { g[0][t] = g[0][t] * d % mod; g[1][t] = g[1][t] * QPow(1ll * d, 1ll * t * t) % mod; } else if (mu[j] == -1) { g[0][t] = g[0][t] * inv[d] % mod; g[1][t] = g[1][t] * Inv(QPow(1ll * d, 1ll * t * t)) % mod; } } } inv_prodg[0][0] = prodg[0][0] = 1; inv_prodg[1][0] = prodg[1][0] = 1; inv_prodt_phi[0] = 1; for (int i = 1; i <= Lim; ++ i) { for (int j = 0; j <= 1; ++ j) { prodg[j][i] = prodg[j][i - 1] * g[j][i] % mod; inv_prodg[j][i] = Inv(prodg[j][i]); } } } LL f1(LL a_, LL b_, LL c_, int type) { if (! type) return QPow(fac[a_], b_ * c_); if (type == 1) return QPow(prodi_i[a_], Sum(b_) * Sum(c_)); LL ret = 1, lim = min(min(a_, b_), c_); for (LL l = 1, r = 1; l <= lim; l = r + 1) { r = min(min(a_ / (a_ / l), b_ / (b_ / l)), c_ / (c_ / l)); ret = ret * QPow(prodt_phi[r] * inv_prodt_phi[l - 1], (a_ / l) * (b_ / l) % (mod - 1) * (c_ / l)) % mod; ret = ret * QPow(fac[a_ / l], (sumphi[r] - sumphi[l - 1] + mod - 1) % (mod - 1) * (b_ / l) % (mod - 1) * (c_ / l)) % mod; } return ret; } LL f2_2(LL a_, LL b_) { LL ret = 1; for (LL l = 1, r = 1; l <= min(a_, b_); l = r + 1) { r = min(a_ / (a_ / l), b_ / (b_ / l)); ret = ret * QPow(prodg[0][r] * inv_prodg[0][l - 1], 1ll * (a_ / l) * (b_ / l)) % mod; } return ret; } LL f2(LL a_, LL b_, LL c_, int type) { LL ret = 1; if (! type) { for (LL l = 1, r = 1; l <= min(a_, b_); l = r + 1) { r = min(a_ / (a_ / l), b_ / (b_ / l)); LL val = QPow(prodg[0][r] * inv_prodg[0][l - 1], 1ll * (a_ / l) * (b_ / l)); ret = (ret * QPow(val, c_)) % mod; } } else if (type == 1) { for (LL l = 1, r = 1; l <= min(a_, b_); l = r + 1) { r = min(a_ / (a_ / l), b_ / (b_ / l)); LL val = QPow(prodg[1][r] * inv_prodg[1][l - 1], Sum(a_ / l) * Sum(b_ / l)); ret = (ret * QPow(val, Sum(c_))) % mod; } } else { LL lim = min(min(a_, b_), c_); for (LL l = 1, r = 1; l <= lim; l = r + 1) { r = min(min(a_ / (a_ / l), b_ / (b_ / l)), c_ / (c_ / l)); ret = ret * QPow(f2_2(a_ / l, b_ / l), (sumphi[r] - sumphi[l - 1] + mod - 1) % (mod - 1) * (c_ / l)) % mod; ret = ret * QPow(prodt_phi[r] * inv_prodt_phi[l - 1], (a_ / l) * (b_ / l) % (mod - 1) * (c_ / l)) % mod; } } return ret; } //============================================================= int main() { T = read(), mod = read(); Prepare(); while (T -- ) { A = read(), B = read(), C = read(); for (int i = 0; i <= 2; ++ i) { ans = f1(A, B, C, i) * f1(B, A, C, i) % mod; ans = ans * Inv(f2(A, B, C, i)) % mod * Inv(f2(A, C, B, i)) % mod; printf("%lld ", ans); } printf("\n"); } return 0; } ```