题解 AT2064 【Many Easy Problems】

2020-01-11 22:08:54


可能更好的阅读体验


设要求的东西是 $f_i$ ,考虑怎么求这个东西。

可以想到计算每个点在多少种方案中,进而想到计算每个点不在多少种方案中。于是容易得到包含 $u$ 的方案数为

$${n\choose i}-\sum_{v\in son_u}{sz_v\choose i}$$

于是

$$\begin{aligned}f_i&=\sum_{u=1}^n\left({n\choose i}-\sum_{v\in son_u}{sz_v\choose i}\right)\\&=n{n\choose i}-\sum_{u=1}^n\sum_{v\in son_u}{sz_v\choose i}\end{aligned}$$

后面的部分可以考虑一个转化。设 $cnt_i$ 表示大小为 $i$ 的子树数量,于是

$$\begin{aligned}f_i&=n{n\choose i}-\sum_{j=i}^ncnt_j{j\choose i}\\&=n{n\choose i}-\sum_{j=i}^ncnt_j\frac{j!}{i!(j-i)!}\\&=n{n\choose i}-\frac{1}{i!}\sum_{j=i}^n\frac{cnt_j\times j!}{(j-i)!}\end{aligned}$$

令 $F_i=cnt_i\times i!$ , $G_i=\frac{1}{i!}$ ,于是

$$\begin{aligned}f_i&=n{n\choose i}-\frac{1}{i!}\sum_{j=i}^nF_j\times G_{j-i}\\&=n{n\choose i}-\frac{1}{i!}\sum_{j=0}^{n-i}F_{i+j}\times G_j\end{aligned}$$

令 $FR\!_i=F_{n-i}$ ,于是

$$\begin{aligned}f_i&=n{n\choose i}-\frac{1}{i!}\sum_{j=0}^{n-i}FR_{n-i-j}\times G_j\end{aligned}$$

可以发现后面已经是卷积的形式了,于是直接 NTT 即可。虽然这个模数很奇怪,但是它确实是 NTT 模数。

// ===================================
//   author: M_sea
//   website: http://m-sea-blog.com/
// ===================================
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#define re register
using namespace std;

inline int read() {
    int X=0,w=1; char c=getchar();
    while (c<'0'||c>'9') { if (c=='-') w=-1; c=getchar(); }
    while (c>='0'&&c<='9') X=X*10+c-'0',c=getchar();
    return X*w;
}

const int N=300000+10;
const int mod=924844033;
inline int qpow(int a,int b) { int c=1;
    for (;b;b>>=1,a=1ll*a*a%mod) if (b&1) c=1ll*c*a%mod;
    return c;
}

int n;

struct edge { int v,nxt; } e[N<<1];
int head[N];
inline void addEdge(int u,int v) {
    static int c=0;
    e[++c]=(edge){v,head[u]},head[u]=c;
}

int fac[N],ifac[N];
inline void init(int n) {
    fac[0]=1;
    for (re int i=1;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod;
    ifac[n]=qpow(fac[n],mod-2);
    for (re int i=n;i;--i) ifac[i-1]=1ll*ifac[i]*i%mod;
}
inline int C(int n,int m) {
    return 1ll*fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}

int cnt[N],sz[N];
inline void dfs(int u,int fa) {
    sz[u]=1;
    for (re int i=head[u];i;i=e[i].nxt) {
        int v=e[i].v; if (v==fa) continue;
        dfs(v,u),sz[u]+=sz[v],++cnt[sz[v]];
    }
    ++cnt[n-sz[u]];
}

int r[N],F[N],G[N];
inline void NTT(int* A,int n,int op) {
    for (re int i=0;i<n;++i) if (i<r[i]) swap(A[i],A[r[i]]);
    for (re int i=1;i<n;i<<=1) {
        int rot=qpow(op==1?5:554906420,(mod-1)/(i<<1));
        for (re int j=0;j<n;j+=i<<1)
            for (re int k=0,w=1;k<i;++k,w=1ll*w*rot%mod) {
                int x=A[j+k],y=1ll*w*A[j+k+i]%mod;
                A[j+k]=(x+y)%mod,A[j+k+i]=(x-y+mod)%mod;
            }
    }
    if (op==-1) { int inv=qpow(n,mod-2);
        for (re int i=0;i<n;++i) A[i]=1ll*A[i]*inv%mod;
    }
}

int main() {
    n=read();
    for (re int i=1;i<n;++i) {
        int u=read(),v=read();
        addEdge(u,v),addEdge(v,u);
    }
    dfs(1,0); init(n);
    for (re int i=1;i<=n;++i) F[i]=1ll*cnt[i]*fac[i]%mod;
    reverse(F,F+n+1);
    for (re int i=0;i<=n;++i) G[i]=ifac[i];
    int lim=1,l=0;
    for (;lim<=n<<1;lim<<=1,++l);
    for (re int i=0;i<lim;++i) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
    NTT(F,lim,1),NTT(G,lim,1);
    for (re int i=0;i<lim;++i) F[i]=1ll*F[i]*G[i]%mod;
    NTT(F,lim,-1);
    reverse(F,F+n+1);
    for (re int i=1;i<=n;++i)
        printf("%lld\n",(1ll*n*C(n,i)%mod
                        -1ll*ifac[i]*F[i]%mod+mod)%mod);
    return 0;
}