题解 P4396 【[AHOI2013]作业】

皎月半洒花

2020-04-12 00:47:48

Solution

写一个感觉比较详细(萌新友好向)的莫队做法…复杂度 $O(n\sqrt m+m\sqrt n)$ 。 考虑直接莫队的话,需要支持查询某个值域区间中的数,需要上树状数组,但这样带 $\log$ 。 于是考虑一下莫队的本质,即莫队的复杂度分析,本质上分析的是 $l,r$ 移动的复杂度,也就是修改的复杂度。所以莫队可以本质上看成一个 $O(n\sqrt m)$ 修改,$O(m)$ 询问的数据结构。观察到询问数较少,于是可以用一个可以快速修改,低速查询的 ds 来维护值域,那这自然就是值域分块,最终复杂度 $O(n\sqrt m+m\sqrt n)$ 。 以下是补充内容: ____ 1、莫队的复杂度分析 令 $m$ 为操作数,$B$ 为块大小。考虑对于一个块内的 $l$,其 $r$ 是单增的,于是考虑如下: - 左端点,在块内可能会一前一后这样设置,这样复杂度被卡到最满,为 $O(m\cdot B)$ ; - 右端点,考虑各块内的询问显然都可以做到单块 $O(n)$,所以不需要考虑 $m$ 的贡献,即右端点移动的复杂度就是 $\frac{n}{B}\cdot n=\frac{n^2}{B}$。 均值一下发现 $m\cdot B+\frac{n^2}{B}\geq 2\sqrt{n^2m}=O(n\sqrt m)$ ,此时有 $m\cdot B=\frac{n^2}{B}$,解得 $B=\frac{n}{\sqrt m}$ . 所以取块大小为 $\frac{n}{\sqrt m}$ 时达到理论最优,复杂度为 $O(n\sqrt m)$ 。 ____ 2、值域分块的正确打开方式 观察到我们本质上需要一个值域上 $O(1)$ 单点加/减,$O(\sqrt n)$ 区间询问的结构,那就是普通的分块了。考虑分块维护块内和和单点值,修改的时候 $O(1)$ 修改点值和块值,询问就是朴素询问(for 过去)即可。 ____ 然后本题需要分别维护出现次数和是否出现,分别维护即可。 ```cpp #include <bits/stdc++.h> using namespace std ; const int N = 200010 ; void debug(int *tp, int minn, int maxn, char c){ for (int i = minn ; i <= maxn ; ++ i) cout << tp[i] << " " ; cout << c ; } int B ; int V ; int n, m ; int bl[N] ; int blv[N] ; int res[N] ; int ans[N] ; int sum[N] ; int sumr[N] ; int sump[N] ; int base[N] ; struct query{ int id ; int l, r ; int a, b ; }q[N] ; bool comp(query a, query b){ return (bl[a.l] ^ bl[b.l]) ? bl[a.l] < bl[b.l] : ((bl[a.l] & 1) ? a.r < b.r : a.r > b.r) ; } void del(int p){ sump[base[p]] -- ; sumr[blv[base[p]]] -- ; if (sump[base[p]] <= 0) -- sum[blv[base[p]]] ; } void add(int p){ sump[base[p]] ++ ; sumr[blv[base[p]]] ++ ; if (sump[base[p]] <= 1) ++ sum[blv[base[p]]] ; } int get_ans(int l, int r){ int ret = 0 ; r = min(r, V) ; if (l > V) return 0 ; int nl = blv[l] + 1 ; int nr = blv[r] - 1 ; if (blv[l] == blv[r]){ for (int i = l ; i <= r ; ++ i) ret += (bool)sump[i] ; return ret ; } for (int i = nl ; i <= nr ; ++ i) ret += sum[i] ; for (int i = l ; blv[i] == blv[l] && l <= V ; ++ i) ret += (bool)sump[i] ; for (int i = r ; blv[i] == blv[r] && r >= 0 ; -- i) ret += (bool)sump[i] ; return ret ; } int get_res(int l, int r){ int ret = 0 ; r = min(r, V) ; if (l > V) return 0 ; int nl = blv[l] + 1 ; int nr = blv[r] - 1 ; if (blv[l] == blv[r]){ for (int i = l ; i <= r ; ++ i) ret += sump[i] ; return ret ; } for (int i = nl ; i <= nr ; ++ i) ret += sumr[i] ; for (int i = l ; blv[i] == blv[l] && l <= V ; ++ i) ret += sump[i] ; for (int i = r ; blv[i] == blv[r] && r >= 0 ; -- i) ret += sump[i] ; return ret ; } int main(){ cin >> n >> m ; B = 1.0 * n / sqrt(m) + 1 ; for (int i = 1 ; i <= n ; ++ i) scanf("%d", &base[i]), V = max(V, base[i]), bl[i] = i / B ; for (int i = 1 ; i <= m ; ++ i) scanf("%d%d%d%d", &q[i].l, &q[i].r, &q[i].a, &q[i].b), q[i].id = i ; sort(q + 1, q + m + 1, comp) ; int l = 1, r = 0 ; B = sqrt(V) + 1 ; for (int i = 0 ; i <= V ; ++ i) blv[i] = i / B ; for (int i = 1 ; i <= m ; ++ i){ int a = q[i].a, b = q[i].b ; while (l < q[i].l) del(l ++) ; while (l > q[i].l) add(-- l) ; while (r < q[i].r) add(++ r) ; while (r > q[i].r) del(r --) ; res[q[i].id] = get_res(a, b) ; ans[q[i].id] = get_ans(a, b) ; } for (int i = 1 ; i <= m ; ++ i) printf("%d %d\n", res[i], ans[i]) ; return 0 ; } ``` 快来夸我码风! (超自豪 ~~我是一个刚开始学 lxl 深刻理论的萌新,不要 d 我~~