题解 P5405 【[CTS2019]氪金手游】

ViXbob

2019-05-19 23:48:57

Solution

[滋磁去我的博客看吖](https://vixbob.moe/16.html) 一开始$\text{naive}$了,以为二元组$u_i \to v_i$连出来的一定是一颗外向树。后来发现有反边。 我索性先来考虑一下外向树的这种情况吧。对于第$i$个点设其子树的$w_i$和为$Sw$, 所有点的和为$Sum$。因为除了$i$子树中的点要比$i$晚抽到外,剩余所有的点都可比$i$早抽到。所以$i$比子树中的所有卡牌都要早抽到的概率为: $$ \begin{aligned}&\frac{w_i}{Sum}\sum_{i=0}^n\left(\frac{Sum-Sw}{Sum}\right)^i\\=&\frac{w_i}{Sum}\times \frac{Sum}{Sw}=\frac{w_i}{Sw}\end{aligned} $$ 这个只与子树信息有关。我们考虑设计状态$f_{i,j}$表示处理完$i$这个子树,子树中$w_i$和为$j$的概率和。转移直接背包就好了。 然后考虑反向边: 反向边我们不好直接处理,考虑容斥。反向边的若干个二元组就是一些条件而已我们想要它们都满足,直接大力容斥有: 至少$0$个条件不满足$-$至少一个条件不满足$+$至少两个条件不满足$-\cdots$ 我们发现至少$i$个不满足就是选择任意$i$条反向边后将这些边反向,另外的边删掉(不考虑这些条件就是至少)。这样会构成一个外向树森林。我们枚举每一条反向边的状态后也可以$\text{dp}$,复杂度$O(2^nn^2)$。 考虑优化一下这个过程,我们其实没有必要知道是每条边具体的状态,我们只用考虑最后被反向的反向边的个数,我们直接把这个东西压入状态,设$f_{i,j,k}$表示处理完$i$的子树后子树$w_i$和为$j$,被反向的反向边的个数为$k$的概率和。(注意到由反向边相连的子树的大小视为$0$)最终的复杂度为$O(n^3)$。 实际上我们没有必要最后用第三维状态$k$来统计答案(计算容斥系数),可以直接在$\text{dp}$转移中就直接考虑容斥系数就好了,选择一条反向边并将其反向实则就是将$\text{dp}$乘上$-1$,然后就可以直接转移了。复杂度$O(n^2)$。 代码: ```cpp /* * 3124.cpp * This file is part of 3124 * * Copyright (C) 2019 - ViXbob * * 3124 is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * 3124 is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with 3124. If not, see <http://www.gnu.org/licenses/>. */ /** * There is no end though there is a start in space. ---Infinity. * It has own power, it ruins, and it goes though there is a start also in the star. ---Finite. * Only the person who was wisdom can read the most foolish one from the history. * The fish that lives in the sea doesn't know the world in the land. * It also ruins and goes if they have wisdom. * It is funnier that man exceeds the speed of light than fish start living in the land. * It can be said that this is an final ultimatum from the god to the people who can fight. * * Steins;Gate */ #include <bits/stdc++.h> #define rep(i, j, k) for(int i = j; i <= k; ++i) #define dep(i, j, k) for(int i = j; i >= k; --i) #define SIZE(x) ((int)x.size()) #define mp(x, y) make_pair(x, y) #define pb(x) push_back(x) #define inv(x) (ksm(x, P - 2)) typedef long long ll; typedef unsigned long long ull; using namespace std; const int maxn = 1e3 + 5; const int P = 998244353; const int inf = 0x3f3f3f3f; inline int read() { char ch = getchar(); int u = 0, f = 1; while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar(); } while(isdigit(ch)) { u = u * 10 + ch - 48; ch = getchar(); } return u * f; } int n, a[maxn], b[maxn], c[maxn], s[maxn], f[maxn][maxn * 3], rt, size[maxn], ans, tmp[maxn * 3]; int inv[maxn * 3]; vector<pair<int, int> > G[maxn]; inline int pls(int x, int y) { x += y; return x >= P ? x - P : x; } inline int dec(int x, int y) { x -= y; return x < 0 ? x + P : x; } inline int mul(int x, int y) { return 1ll * x * y % P; } inline int ksm(int x, int k, int rnt = 1) { for(int i = k; i; i >>= 1, x = 1ll * x * x % P) if(i & 1) rnt = 1ll * rnt * x % P; return rnt; } inline void dfs(int x, int fr) { size[x] = 1; f[x][1] = 1ll * a[x] * s[x] % P; f[x][2] = 1ll * b[x] * s[x] % P * 2 % P; f[x][3] = 1ll * c[x] * s[x] % P * 3 % P; for(auto v : G[x]) if(v.first != fr) { dfs(v.first, x); rep(i, 1, size[x] * 3) rep(j, 1, size[v.first] * 3) { int res = 1ll * f[x][i] * f[v.first][j] % P; if(v.second) tmp[i + j] = dec(tmp[i + j], res), tmp[i] = pls(tmp[i], res); else tmp[i + j] = pls(tmp[i + j], res); } size[x] += size[v.first]; rep(i, 1, 3 * size[x]) f[x][i] = tmp[i], tmp[i] = 0; } rep(i, 1, size[x] * 3) f[x][i] = 1ll * f[x][i] * inv[i] % P; } int main() { // freopen("1.in", "r", stdin); // freopen("my.out", "w", stdout); n = read(); rep(i, 1, 3 * n) inv[i] = inv(i); rep(i, 1, n) a[i] = read(), b[i] = read(), c[i] = read(), s[i] = inv(a[i] + b[i] + c[i]); rep(i, 1, n - 1) { int x = read(), y = read(); G[y].pb(mp(x, 1)); G[x].pb(mp(y, 0)); } dfs(1, 1); rep(i, 1, size[1] * 3) ans = pls(ans, f[1][i]); cout << ans << endl; return 0; } ```