数学题求助

学术版

Water__Problem @ 2025-01-24 10:52:19

一些组合恒等式不会证:

1.\sum^n_{k=0}kC^{n-k}_{2*n+1}=(2n+1)C^n_{2n-1}-2^{2n-1}

2.\sum^n_{k=0}kC^{n-k}_{2n}=nC^n_{2n-1}

3.\sum^{2n-1}_{k=1}(-1)^{k-1} \frac{n-k}{C^k_{2n}}=0

必关!!!


by liujiaxi123456 @ 2025-01-24 11:40:17

@Water__Problem 目前只证出第二个


by liujiaxi123456 @ 2025-01-24 11:48:58

@Water__Problem

左式 = \sum_{k=0}^n (n+k)\cdot C^{n+k}_{2n} - n\cdot C_{2n}^{n+k}

运用吸收公式,得到:

\sum 2n\cdot C_{2n-1}^{n+k-1} - n\cdot C^{n+k}_{2n}

S(n, m) = \sum_{i=1}^m C^i_n

= 2n\cdot S(2n-1, 2n) - n\cdot S(2n, 2n) - 2n\cdot S(2n-1, n-2) + n\cdot S(2n, n-1)

因为:

所以:

= n\cdot (S(2n, 2n)-C^{2n}_{2n-1}) - n\cdot S(2n, 2n) - n\cdot (S(2n, n-1)-C^{n-1}_{2n-1}) + n\cdot S(2n, n-1) = -n\cdot C_{2n-1}^{2n} + n\cdot C_{2n-1}^{n-1} = n\cdot C_{2n-1}^{n-1} = n\cdot C_{2n-1}^n

by liujiaxi123456 @ 2025-01-24 12:03:38

@Water__Problem 第三个会了,如下


by liujiaxi123456 @ 2025-01-24 12:07:41

@Water__Problem

S_1 = \sum_{k=1}^{2n-1} (-1)^{k-1} \frac{n}{\binom{2n}{k}} = n \sum_{k=1}^{2n-1} (-1)^{k-1} \frac{1}{\binom{2n}{k}}

S_2 = \sum_{k=1}^{2n-1} (-1)^{k-1} \frac{k}{\binom{2n}{k}}

考虑对 k 进行换元,使 k' = 2n-k

S_2 = \sum_{k=1}^{2n-1} (-1)^{k-1} \frac{2n-k}{\binom{2n}{2n-k}} = \sum_{k=1}^{2n-1} (-1)^{k-1} \frac{2n-k}{\binom{2n}{k}} = 2S_1 - S_2

由此得证:S_1 = S_2

证毕


by liujiaxi123456 @ 2025-01-24 12:08:36

@Water__Problem 先去吃饭了,第一个等会再证


by Water__Problem @ 2025-01-24 12:37:43

@liujiaxi123456 感谢


by liujiaxi123456 @ 2025-01-24 14:45:21

@Water__Problem 第一个总算会了


by liujiaxi123456 @ 2025-01-24 15:07:56

@Water__Problem

左式 = \sum_{k=0}^n (n-k)\cdot C^k_{2n+1} = n\sum_{k=0}^n C_{2n+1}^k - \sum_{k=0}^n k\cdot C_{2n+1}^k

两个拆开处理,分别为 s1,s2:

S_1 = n\cdot (\sum_{k=0}^{2n+1}C_{2n+1}^k - \sum_{k=0}^{n+1}C_{2n+1}^{n+1+k}) = n\cdot (\sum_{k=0}^{2n+1}C_{2n+1}^k - \sum_{k=0}^{n}C_{2n+1}^{k}) \therefore 2S_1 = n\cdot \sum_{k=0}^{2n+1} C_{2n+1}^k = n\cdot 2^{2n+1} \therefore S_1 = n\cdot 2^{2n} S_2 = \sum_{k=0}^n(2n+1)\cdot C_{2n}^{k-1} = (2n+1)\sum_{k=0}^{n-1}C_{2n}^k = (2n+1)(\sum_{k=0}^{2n}C_{2n}^k - \sum_{k=0}^{n-1}C_{2n}^k - C_{2n}^n) \therefore \sum_{k=0}^{n-1}C_{2n}^k = 2^{2n-1} - \frac{C_2n^n}{2} \therefore S_2 = n\cdot 2^{2n} + 2^{2n-1} - n\cdot C_{2n}^n - \frac{C_{2n}^n}{2} S_1 - S_2 = (2n+1)\cdot \frac{C_{2n}^n}{2} - 2^{2n-1}

和右式比较一下,就是要证 C_{2n}^n = 2C_{2n-1}^n

\because C_{2n}^n = C_{2n-1}^n + C_{2n-1}^{n-1}

所以需证: C_{2n-1}^n = C_{2n-1}^{n-1}

而由于组合数有对称性,所以显然成立。


by Water__Problem @ 2025-01-24 15:20:50

@liujiaxi123456 真的太感谢了


|