【OI无关】求助一道数学题

灌水区

Inkyo @ 2020-06-13 17:38:44

已知函数f(x)=\frac{lnx}{x},g(x)=xe^{-x},若有 x1∈(0,+∞)x2 ∈ R ,使得f(x1) = g(x2) = k ~~(k<0)成立,则(\frac{x2}{x1})^2e^k的最大值为__

听说同校大佬秒解了这题,但是我还是不会QAQ

有数学大佬来救救我吗,我数学很菜的QAQ蟹蟹啦


by Inkyo @ 2020-06-13 17:47:56

Inkyo是个没人救的屑(确信)


by Talanton_Cerydra @ 2020-06-13 17:50:51

看不懂题目,溜了(


by Siyunshan @ 2020-06-13 17:55:06

如果说x1 &x2代表x_1 x_2de的话,答案大概是4/e^2


by FunnyCreatress @ 2020-06-13 17:56:26

换元啊

t=e^x g(x)=f(t)

然后就秒了


by Inkyo @ 2020-06-13 18:00:09

啊,我好像有点想法了(


by FunnyCreatress @ 2020-06-13 18:08:59

原式=k^2e^k求个导
(2k+k^2)e^k=0
那么 k=-2 时最大有答案 \frac 4{e^2}


by FunnyCreatress @ 2020-06-13 18:09:06

@Inkyo墨攸


|