wishapig @ 2023-04-16 14:50:03
给出 n 次多项式 F(x)
对每个 i\in [1,k],求出 [x^n]F^i(x)
这个能不能做到 k\log n 之类的复杂度
by 水军带你飞 @ 2023-04-16 14:55:37
大概不行。这个应该可以归约到 多项式复合逆。
by wishapig @ 2023-04-16 15:05:42
原来的问题是求
by YeahPotato @ 2023-04-16 15:08:23
给定 n,k,求 n 排列的环数的 k 次方的期望。
by 水军带你飞 @ 2023-04-16 15:55:58
@wishapig 首先不必要用斯特林数,直接枚举 i 个环,就是 \sum i^k \times [x^n] (- \ln(1 - x))^i。
现在对每个 i 求 [x^n](-\ln(1 - x))^i。-(\ln(1 - x)) 的复合逆是好求的,之后直接用拉格朗日反演就行。