AT_abc192_f [ABC192F] Potion
Description
[problemUrl]: https://atcoder.jp/contests/abc192/tasks/abc192_f
$ N $ 種類の素材があり、素材 $ i $ には $ A_i $ の魔力があります。
魔法使いの高橋君は、この中から $ 1 $ 種類以上を選んで合成し、ポーションを作ろうとしています。
$ k $ 種類の素材を合成して出来たポーションの魔力は、合成した直後には素材の魔力の合計であり、時間が $ 1 $ 経過するごとに $ k $ 増加します。 魔力の増加は連続的ではなく離散的であることに注意してください。
高橋君が時刻 $ 0 $ に $ 1 $ 度だけ素材の合成を行うとき、魔力がちょうど $ X $ のポーションは、最速でいつ手に入りますか?
なお、制約下で魔力がちょうど $ X $ のポーションを作れることが証明されます。
Input Format
入力は以下の形式で標準入力から与えられる。
> $ N $ $ X $ $ A_1 $ $ \ldots $ $ A_N $
Output Format
魔力がちょうど $ X $ のポーションを手に入れることができる最も早い時刻を出力せよ。
Explanation/Hint
### 制約
- $ 1\ \leq\ N\ \leq\ 100 $
- $ 1\ \leq\ A_i\ \leq\ 10^7 $
- $ 10^9\ \leq\ X\ \leq\ 10^{18} $
- 入力は全て整数
### Sample Explanation 1
素材 $ 1 $ と素材 $ 3 $ を合成して出来たポーションの魔力は、時刻 $ 0 $ で $ 3+8=11 $ であり、時間が $ 1 $ 経過するごとに $ 2 $ 増加するので、時刻 $ 4999999994 $ に $ 9999999999 $ になります。これが最速です。 素材 $ 1,2,3 $ 全てを合成して出来たポーションの魔力は、時刻 $ 3333333327 $ に $ 9999999998 $、時刻 $ 3333333328 $ に $ 10000000001 $ となり、ちょうど $ 9999999999 $ にはなりません。