AT_abc256_d [ABC256D] Union of Interval
题目描述
对于实数 $L,R$,由所有满足 $L \leq x < R$ 的实数组成的集合记作 $[L,R)$。这种形式表示的集合称为右半开区间。
给定 $N$ 个右半开区间 $[L_i, R_i)$。它们的并集记作 $S$。请用最少数量的右半开区间的并集来表示 $S$。
输入格式
输入通过标准输入给出,格式如下:
> $N$
> $L_1$ $R_1$
> $\vdots$
> $L_N$ $R_N$
输出格式
假设 $S$ 可以用最少 $k$ 个右半开区间的并集表示。请按 $X_i$ 升序输出这 $k$ 个右半开区间 $[X_i, Y_i)$,每行一个区间:
> $X_1$ $Y_1$
> $\vdots$
> $X_k$ $Y_k$
说明/提示
### 限制条件
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq L_i < R_i \leq 2 \times 10^5$
- 输入中的所有数值均为整数。
### 样例解释 1
$3$ 个右半开区间 $[10,20),[20,30),[40,50)$ 的并集等价于 $2$ 个右半开区间 $[10,30),[40,50)$ 的并集。
### 样例解释 2
$3$ 个右半开区间 $[10,40),[30,60),[20,50)$ 的并集等价于 $1$ 个右半开区间 $[10,60)$。
由 ChatGPT 4.1 翻译