AT_abc259_f [ABC259F] Select Edges
题目描述
给定一棵有 $N$ 个顶点的树。对于 $i=1,2,\ldots,N-1$,第 $i$ 条边连接顶点 $u_i$ 和顶点 $v_i$,其权值为 $w_i$。
你可以从 $N-1$ 条边中选择若干条(可以选择 $0$ 条,也可以选择全部 $N-1$ 条)。但是,对于每个 $i=1,2,\ldots,N$,与顶点 $i$ 相连的被选中的边数不能超过 $d_i$ 条。请你求出所能得到的边权和的最大可能值。
输入格式
输入通过标准输入给出,格式如下:
> $N$ $d_1$ $d_2$ $\ldots$ $d_N$
> $u_1$ $v_1$ $w_1$
> $u_2$ $v_2$ $w_2$
> $\vdots$
> $u_{N-1}$ $v_{N-1}$ $w_{N-1}$
输出格式
输出一个整数,表示最大可能的边权和。
说明/提示
## 限制条件
- $2 \leq N \leq 3 \times 10^5$
- $1 \leq u_i, v_i \leq N$
- $-10^9 \leq w_i \leq 10^9$
- $d_i$ 是不超过顶点 $i$ 的度数的非负整数
- 给定的图是一棵树
- 所有输入均为整数
## 样例解释 1
选择第 $1,2,5,6$ 条边时,所选边的权值之和为 $8+9+8+3=28$,这是可能得到的最大值。
由 ChatGPT 4.1 翻译