AT_abc389_b [ABC389B] tcaF
Description
You are given an integer $ X $ not less than $ 2 $ .
Find the positive integer $ N $ such that $ N! = X $ .
Here, $ N! $ denotes the factorial of $ N $ , and it is guaranteed that there is exactly one such $ N $ .
Input Format
The input is given from Standard Input in the following format:
> $ X $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
From $ 3!=3\times2\times1=6 $ , print $ 3 $ .
### Sample Explanation 2
From $ 20!=2432902008176640000 $ , print $ 20 $ .
### Constraints
- $ 2 \leq X \leq 3 \times 10^{18} $
- There is exactly one positive integer $ N $ such that $ N!=X $ .
- All input values are integers.