AT_abc389_b [ABC389B] tcaF

Description

You are given an integer $ X $ not less than $ 2 $ . Find the positive integer $ N $ such that $ N! = X $ . Here, $ N! $ denotes the factorial of $ N $ , and it is guaranteed that there is exactly one such $ N $ .

Input Format

The input is given from Standard Input in the following format: > $ X $

Output Format

Print the answer.

Explanation/Hint

### Sample Explanation 1 From $ 3!=3\times2\times1=6 $ , print $ 3 $ . ### Sample Explanation 2 From $ 20!=2432902008176640000 $ , print $ 20 $ . ### Constraints - $ 2 \leq X \leq 3 \times 10^{18} $ - There is exactly one positive integer $ N $ such that $ N!=X $ . - All input values are integers.