AT_abc390_e [ABC390E] Vitamin Balance
Description
There are $ N $ foods, each containing exactly one of vitamins $ 1 $ , $ 2 $ , and $ 3 $ .
Specifically, eating the $ i $ -th food gives you $ A_i $ units of vitamin $ V_i $ , and $ C_i $ calories.
Takahashi can choose any subset of these $ N $ foods as long as the total calorie consumption does not exceed $ X $ .
Find the maximum possible value of this: the minimum intake among vitamins $ 1 $ , $ 2 $ , and $ 3 $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ X $ $ V_1 $ $ A_1 $ $ C_1 $ $ V_2 $ $ A_2 $ $ C_2 $ $ \vdots $ $ V_N $ $ A_N $ $ C_N $
Output Format
Print the maximum possible value of "the minimum intake among vitamins $ 1 $ , $ 2 $ , and $ 3 $ " when the total calories consumed is at most $ X $ .
Explanation/Hint
### Sample Explanation 1
Each food provides the following if eaten:
- 1st food: $ 8 $ units of vitamin $ 1 $ , and $ 5 $ calories
- 2nd food: $ 3 $ units of vitamin $ 2 $ , and $ 5 $ calories
- 3rd food: $ 7 $ units of vitamin $ 2 $ , and $ 10 $ calories
- 4th food: $ 2 $ units of vitamin $ 3 $ , and $ 5 $ calories
- 5th food: $ 3 $ units of vitamin $ 3 $ , and $ 10 $ calories
Eating the 1st, 2nd, 4th, and 5th foods gives $ 8 $ units of vitamin $ 1 $ , $ 3 $ units of vitamin $ 2 $ , $ 5 $ units of vitamin $ 3 $ , and $ 25 $ calories.
In this case, the minimum among the three vitamin intakes is $ 3 $ (vitamin $ 2 $ ).
It is impossible to get $ 4 $ or more units of each vitamin without exceeding $ 25 $ calories, so the answer is $ 3 $ .
### Constraints
- $ 1 \leq N \leq 5000 $
- $ 1 \leq X \leq 5000 $
- $ 1 \leq V_i \leq 3 $
- $ 1 \leq A_i \leq 2 \times 10^5 $
- $ 1 \leq C_i \leq X $
- All input values are integers.