AT_abc391_f [ABC391F] K-th Largest Triplet
Description
You are given three integer sequences of length $ N $ , namely $ A=(A_1,A_2,\ldots,A_N) $ , $ B=(B_1,B_2,\ldots,B_N) $ , and $ C=(C_1,C_2,\ldots,C_N) $ , and an integer $ K $ .
For each of the $ N^3 $ choices of integers $ i,j,k $ ( $ 1\leq i,j,k\leq N $ ), compute the value $ A_iB_j + B_jC_k + C_kA_i $ . Among all these values, find the $ K $ -th largest value.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ K $ $ A_1 $ $ A_2 $ $ \ldots $ $ A_N $ $ B_1 $ $ B_2 $ $ \ldots $ $ B_N $ $ C_1 $ $ C_2 $ $ \ldots $ $ C_N $
Output Format
Print the answer.
Explanation/Hint
### Sample Explanation 1
The $ N^3=8 $ values are computed as follows:
- For $ (i,j,k)=(1,1,1) $ : $ A_1B_1+B_1C_1+C_1A_1=1\times 3+3\times 5+5\times 1=23 $
- For $ (i,j,k)=(1,1,2) $ : $ A_1B_1+B_1C_2+C_2A_1=1\times 3+3\times 6+6\times 1=27 $
- For $ (i,j,k)=(1,2,1) $ : $ A_1B_2+B_2C_1+C_1A_1=1\times 4+4\times 5+5\times 1=29 $
- For $ (i,j,k)=(1,2,2) $ : $ A_1B_2+B_2C_2+C_2A_1=1\times 4+4\times 6+6\times 1=34 $
- For $ (i,j,k)=(2,1,1) $ : $ A_2B_1+B_1C_1+C_1A_2=2\times 3+3\times 5+5\times 2=31 $
- For $ (i,j,k)=(2,1,2) $ : $ A_2B_1+B_1C_2+C_2A_2=2\times 3+3\times 6+6\times 2=36 $
- For $ (i,j,k)=(2,2,1) $ : $ A_2B_2+B_2C_1+C_1A_2=2\times 4+4\times 5+5\times 2=38 $
- For $ (i,j,k)=(2,2,2) $ : $ A_2B_2+B_2C_2+C_2A_2=2\times 4+4\times 6+6\times 2=44 $
Sorting these values in descending order, we have $ (44,38,36,34,31,29,27,23) $ , so the 5th largest value is $ 31 $ .
### Constraints
- $ 1\leq N \leq 2\times 10^5 $
- $ 1\leq K \leq \min(N^3,5\times 10^5) $
- $ 1\leq A_i,B_i,C_i \leq 10^9 $
- All input values are integers.