AT_abc392_a [ABC392A] Shuffled Equation

Description

You are given a sequence of integers $ A = (A_1, A_2, A_3) $ . Let $ B = (B_1, B_2, B_3) $ be any permutation of $ A $ . Determine whether it is possible that $ B_1 \times B_2 = B_3 $ .

Input Format

The input is given from Standard Input in the following format: > $ A_1 $ $ A_2 $ $ A_3 $

Output Format

If it is possible that $ B_1 \times B_2 = B_3 $ , print `Yes`; otherwise, print `No`.

Explanation/Hint

### Sample Explanation 1 Here, $ A=(3,15,5) $ . By rearranging it as $ B=(3,5,15) $ , we can satisfy $ B_1 \times B_2 = B_3 $ . ### Sample Explanation 2 No permutation of $ B $ satisfies $ B_1 \times B_2 = B_3 $ . ### Constraints - All input values are integers. - $ 1 \le A_1, A_2, A_3 \le 100 $