AT_abc392_a [ABC392A] Shuffled Equation
Description
You are given a sequence of integers $ A = (A_1, A_2, A_3) $ .
Let $ B = (B_1, B_2, B_3) $ be any permutation of $ A $ .
Determine whether it is possible that $ B_1 \times B_2 = B_3 $ .
Input Format
The input is given from Standard Input in the following format:
> $ A_1 $ $ A_2 $ $ A_3 $
Output Format
If it is possible that $ B_1 \times B_2 = B_3 $ , print `Yes`; otherwise, print `No`.
Explanation/Hint
### Sample Explanation 1
Here, $ A=(3,15,5) $ . By rearranging it as $ B=(3,5,15) $ , we can satisfy $ B_1 \times B_2 = B_3 $ .
### Sample Explanation 2
No permutation of $ B $ satisfies $ B_1 \times B_2 = B_3 $ .
### Constraints
- All input values are integers.
- $ 1 \le A_1, A_2, A_3 \le 100 $