AT_abc392_f [ABC392F] Insert
Description
There is an empty array $ A $ . For $ i = 1,2,\ldots,N $ , perform the following operation in order:
- Insert the number $ i $ into $ A $ so that it becomes the $ P_i $ -th element from the beginning.
- More precisely, replace $ A $ with the concatenation of the first $ P_i-1 $ elements of $ A $ , then $ i $ , then the remaining elements of $ A $ starting from the $ P_i $ -th element, in this order.
Output the final array $ A $ after all operations have been completed.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ P_1 $ $ P_2 $ $ \ldots $ $ P_N $
Output Format
Let the final array be $ A = (A_1, A_2, \ldots, A_N) $ . Print $ A_1, A_2, \ldots, A_N $ in this order, separated by spaces.
Explanation/Hint
### Sample Explanation 1
The operations are performed as follows:
- Insert the number $ 1 $ so that it becomes the 1st element of $ A $ . Now, $ A = (1) $ .
- Insert the number $ 2 $ so that it becomes the 1st element of $ A $ . Now, $ A = (2, 1) $ .
- Insert the number $ 3 $ so that it becomes the 2nd element of $ A $ . Now, $ A = (2, 3, 1) $ .
- Insert the number $ 4 $ so that it becomes the 1st element of $ A $ . Now, $ A = (4, 2, 3, 1) $ .
### Constraints
- $ 1 \leq N \leq 5\times 10^5 $
- $ 1 \leq P_i \leq i $
- All input values are integers.