AT_abc393_e [ABC393E] GCD of Subset
Description
You are given a sequence $ A = (A_1, A_2, \dots, A_N) $ of length $ N $ and a positive integer $ K $ (at most $ N $ ).
For each $ i = 1, 2, \dots, N $ , solve the following problem:
- When you choose $ K $ elements from $ A $ that include $ A_i $ , find the maximum possible GCD (greatest common divisor) of those chosen elements.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ K $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $
Output Format
Print $ N $ lines. The $ j $ -th line should contain the answer for $ i=j $ .
Explanation/Hint
### Sample Explanation 1
For $ i=1 $ , choosing $ A_1 $ and $ A_3 $ yields $ \gcd(\lbrace 3,6 \rbrace) = 3 $ , which is the maximum.
For $ i=2 $ , choosing $ A_2 $ and $ A_5 $ yields $ \gcd(\lbrace 4,12 \rbrace) = 4 $ , which is the maximum.
For $ i=3 $ , choosing $ A_3 $ and $ A_5 $ yields $ \gcd(\lbrace 6,12 \rbrace) = 6 $ , which is the maximum.
For $ i=4 $ , choosing $ A_4 $ and $ A_2 $ yields $ \gcd(\lbrace 7,4 \rbrace) = 1 $ , which is the maximum.
For $ i=5 $ , choosing $ A_5 $ and $ A_3 $ yields $ \gcd(\lbrace 12,6 \rbrace) = 6 $ , which is the maximum.
### Constraints
- $ 1 \leq K \leq N \leq 1.2 \times 10^6 $
- $ 1 \leq A_i \leq 10^6 $
- All input values are integers.