AT_abc393_f [ABC393F] Prefix LIS Query
Description
You are given a sequence $ A = (A_1, A_2, \dots, A_N) $ of length $ N $ .
Answer $ Q $ queries. The $ i $ -th query ( $ 1 \leq i \leq Q $ ) is as follows:
- You are given integers $ R_i $ and $ X_i $ . Consider a subsequence (not necessarily contiguous) of $ (A_1, A_2, \dots, A_{R_i}) $ that is strictly increasing and consists only of elements at most $ X_i $ . Find the maximum possible length of such a subsequence. It is guaranteed that $ X_i \geq \min\lbrace A_1, A_2,\dots,A_{R_i} \rbrace $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ Q $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $ $ R_1 $ $ X_1 $ $ R_2 $ $ X_2 $ $ \vdots $ $ R_Q $ $ X_Q $
Output Format
Print $ Q $ lines. The $ i $ -th line should contain the answer to the $ i $ -th query.
Explanation/Hint
### Sample Explanation 1
- 1st query: For the sequence $ (2,4) $ , the longest strictly increasing subsequence with all elements at most $ 5 $ has length $ 2 $ .
Specifically, $ (2,4) $ qualifies.
- 2nd query: For the sequence $ (2,4,1,3,3) $ , the longest strictly increasing subsequence with all elements at most $ 2 $ has length $ 1 $ .
Specifically, $ (2) $ and $ (1) $ qualify.
- 3rd query: For the sequence $ (2,4,1,3,3) $ , the longest strictly increasing subsequence with all elements at most $ 3 $ has length $ 2 $ .
Specifically, $ (2,3) $ and $ (1,3) $ qualify.
### Constraints
- $ 1 \leq N,Q \leq 2 \times 10^5 $
- $ 1 \leq A_i \leq 10^9 $
- $ 1 \leq R_i \leq N $
- $ \min\lbrace A_1, A_2,\dots,A_{R_i} \rbrace\leq X_i\leq 10^9 $
- All input values are integers.