AT_abc397_e [ABC397E] Path Decomposition of a Tree

Description

You are given a tree with $ NK $ vertices. The vertices are numbered $ 1,2,\dots,NK $ , and the $ i $ -th edge ( $ i=1,2,\dots,NK-1 $ ) connects vertices $ u_i $ and $ v_i $ bidirectionally. Determine whether this tree can be decomposed into $ N $ paths, each of length $ K $ . More precisely, determine whether there exists an $ N \times K $ matrix $ P $ satisfying the following: - $ P_{1,1}, \dots, P_{1,K}, P_{2,1}, \dots, P_{N,K} $ is a permutation of $ 1,2,\dots,NK $ . - For each $ i=1,2,\dots,N $ and $ j=1,2,\dots,K-1 $ , there is an edge connecting vertices $ P_{i,j} $ and $ P_{i,j+1} $ .

Input Format

The input is given from Standard Input in the following format: > $ N $ $ K $ $ u_1 $ $ v_1 $ $ u_2 $ $ v_2 $ $ \vdots $ $ u_{NK-1} $ $ v_{NK-1} $

Output Format

If it is possible to decompose the tree into $ N $ paths each of length $ K $ , print `Yes`. Otherwise, print `No`.

Explanation/Hint

### Sample Explanation 1 It can be decomposed into a path with vertices $ 1,2 $ , a path with vertices $ 3,4 $ , and a path with vertices $ 5,6 $ . ### Constraints - $ 1 \leq N $ - $ 1 \leq K $ - $ NK \leq 2 \times 10^5 $ - $ 1 \leq u_i < v_i \leq NK $ - The given graph is a tree. - All input values are integers.