AT_abc397_g [ABC397G] Maximize Distance

Description

You are given a directed graph with $ N $ vertices and $ M $ edges. The vertices are numbered $ 1,2,\dots,N $ . Edge $ j $ ( $ j=1,2,\dots,M $ ) goes from vertex $ u_j $ to vertex $ v_j $ . It is guaranteed that vertex $ N $ is reachable from vertex $ 1 $ . Initially, all edges have weight $ 0 $ . We choose exactly $ K $ out of the $ M $ edges and change their weights to $ 1 $ . Find the maximum possible value of the shortest distance from vertex $ 1 $ to vertex $ N $ in the resulting graph.

Input Format

The input is given from Standard Input in the following format: > $ N $ $ M $ $ K $ $ u_1 $ $ v_1 $ $ u_2 $ $ v_2 $ $ \vdots $ $ u_M $ $ v_M $

Output Format

Print the answer.

Explanation/Hint

### Sample Explanation 1 By choosing edges $ 1,3 $ , the shortest distance from vertex $ 1 $ to vertex $ 3 $ becomes $ 1 $ . There is no way to make the shortest distance $ 2 $ or greater, so the answer is $ 1 $ . ### Sample Explanation 2 By choosing edges $ 1,2,4 $ , the shortest distance from vertex $ 1 $ to vertex $ 4 $ becomes $ 2 $ . There is no way to make the shortest distance $ 3 $ or greater, so the answer is $ 2 $ . ### Sample Explanation 3 Note that there may be multi-edges. ### Constraints - $ 2 \leq N \leq 30 $ - $ 1 \leq K \leq M \leq 100 $ - $ 1 \leq u_j, v_j \leq N $ - $ u_j \neq v_j $ - In the given graph, vertex $ N $ is reachable from vertex $ 1 $ . - All input values are integers.