AT_abc407_a [ABC407A] Approximation

Description

You are given a positive integer $ A $ and a positive odd integer $ B $ . Output the integer whose difference from the real number $ \dfrac AB $ is the smallest. It can be proved that, under the constraints, such an integer is unique.

Input Format

The input is given from Standard Input in the following format: > $ A $ $ B $

Output Format

Output the integer that minimizes the difference from $ \dfrac AB $ .

Explanation/Hint

### Sample Explanation 1 We have $ \dfrac AB = \dfrac47 = 0.5714\ldots $ . The difference between $ \dfrac AB $ and $ 1 $ is $ \dfrac37 = 0.4285\ldots $ , and no integer has a smaller difference. Thus, print `1`. ### Sample Explanation 2 We have $ \dfrac AB = \dfrac{407}{29} = 14.0344\ldots $ . The difference between $ \dfrac AB $ and $ 14 $ is $ \dfrac1{29} = 0.0344\ldots $ , and no integer has a smaller difference. Thus, print `14`. ### Sample Explanation 3 $ \dfrac AB $ may itself be an integer. ### Constraints - $ 1 \le A \le 407 $ - $ 1 \le B \le 407 $ - $ B $ is odd. - All input values are integers.