AT_abc407_a [ABC407A] Approximation
Description
You are given a positive integer $ A $ and a positive odd integer $ B $ .
Output the integer whose difference from the real number $ \dfrac AB $ is the smallest.
It can be proved that, under the constraints, such an integer is unique.
Input Format
The input is given from Standard Input in the following format:
> $ A $ $ B $
Output Format
Output the integer that minimizes the difference from $ \dfrac AB $ .
Explanation/Hint
### Sample Explanation 1
We have $ \dfrac AB = \dfrac47 = 0.5714\ldots $ . The difference between $ \dfrac AB $ and $ 1 $ is $ \dfrac37 = 0.4285\ldots $ , and no integer has a smaller difference.
Thus, print `1`.
### Sample Explanation 2
We have $ \dfrac AB = \dfrac{407}{29} = 14.0344\ldots $ . The difference between $ \dfrac AB $ and $ 14 $ is $ \dfrac1{29} = 0.0344\ldots $ , and no integer has a smaller difference.
Thus, print `14`.
### Sample Explanation 3
$ \dfrac AB $ may itself be an integer.
### Constraints
- $ 1 \le A \le 407 $
- $ 1 \le B \le 407 $
- $ B $ is odd.
- All input values are integers.