AT_abc407_f [ABC407F] Sums of Sliding Window Maximum
Description
You are given a sequence of non-negative integers $ A = (A_1,\dots,A_N) $ of length $ N $ .
For each $ k = 1,\dots,N $ , solve the following problem:
- $ A $ has $ N-k+1 $ (contiguous) subarrays of length $ k $ . Take the maximum of each of them, and output the sum of these maxima.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \dots $ $ A_N $
Output Format
Output $ N $ lines. The $ i $ -th line ( $ 1 \le i \le N $ ) should contain the answer for $ k = i $ .
Explanation/Hint
### Sample Explanation 1
For $ k = 1 $ , there are four subarrays of length $ k=1 $ :
- $ (5) $ , whose maximum is $ 5 $ ;
- $ (3) $ , whose maximum is $ 3 $ ;
- $ (4) $ , whose maximum is $ 4 $ ;
- $ (2) $ , whose maximum is $ 2 $ .
The sum is $ 5 + 3 + 4 + 2 = 14 $ .
For $ k = 2 $ , there are three subarrays of length $ k=2 $ :
- $ (5,3) $ , whose maximum is $ 5 $ ;
- $ (3,4) $ , whose maximum is $ 4 $ ;
- $ (4,2) $ , whose maximum is $ 4 $ .
The sum is $ 5 + 4 + 4 = 13 $ .
For $ k = 3 $ , there are two subarrays of length $ k=3 $ :
- $ (5,3,4) $ , whose maximum is $ 5 $ ;
- $ (3,4,2) $ , whose maximum is $ 4 $ .
The sum is $ 5 + 4 = 9 $ .
For $ k = 4 $ , there is one subarray of length $ k=4 $ :
- $ (5,3,4,2) $ , whose maximum is $ 5 $ .
The sum is $ 5 $ .
### Constraints
- $ 1 \le N \le 2 \times 10^{5} $
- $ 0 \le A_i \le 10^{7} $ ( $ 1 \le i \le N $ )
- All input values are integers.