AT_abc412_e [ABC412E] LCM Sequence
Description
For a positive integer $ n $ , define $ A_n $ as the least common multiple of $ 1, 2, \dots, n $ .
You are given positive integers $ L $ and $ R $ . How many distinct integers are contained in the sequence $ (A_L, A_{L+1}, \dots, A_R) $ ?
Input Format
The input is given from Standard Input in the following format:
> $ L $ $ R $
Output Format
Output the number of distinct integers contained in the sequence $ (A_L, A_{L+1}, \dots, A_R) $ .
Explanation/Hint
### Sample Explanation 1
Listing $ A_4 $ through $ A_{12} $ :
- $ A_4 = 12 $
- $ A_5 = 60 $
- $ A_6 = 60 $
- $ A_7 = 420 $
- $ A_8 = 840 $
- $ A_9 = 2520 $
- $ A_{10} = 2520 $
- $ A_{11} = 27720 $
- $ A_{12} = 27720 $
Thus, $ (A_4, A_5, \dots, A_{12}) $ contains six distinct integers.
### Constraints
- $ 1 \leq L \leq R \leq 10^{14} $
- $ R - L \leq 10^7 $
- $ L $ and $ R $ are integers.