AT_abc412_e [ABC412E] LCM Sequence

Description

For a positive integer $ n $ , define $ A_n $ as the least common multiple of $ 1, 2, \dots, n $ . You are given positive integers $ L $ and $ R $ . How many distinct integers are contained in the sequence $ (A_L, A_{L+1}, \dots, A_R) $ ?

Input Format

The input is given from Standard Input in the following format: > $ L $ $ R $

Output Format

Output the number of distinct integers contained in the sequence $ (A_L, A_{L+1}, \dots, A_R) $ .

Explanation/Hint

### Sample Explanation 1 Listing $ A_4 $ through $ A_{12} $ : - $ A_4 = 12 $ - $ A_5 = 60 $ - $ A_6 = 60 $ - $ A_7 = 420 $ - $ A_8 = 840 $ - $ A_9 = 2520 $ - $ A_{10} = 2520 $ - $ A_{11} = 27720 $ - $ A_{12} = 27720 $ Thus, $ (A_4, A_5, \dots, A_{12}) $ contains six distinct integers. ### Constraints - $ 1 \leq L \leq R \leq 10^{14} $ - $ R - L \leq 10^7 $ - $ L $ and $ R $ are integers.