AT_abc417_c [ABC417C] Distance Indicators
Description
You are given an integer sequence $ A=(A _ 1,A _ 2,\ldots,A _ N) $ of length $ N $ .
Find how many pairs of integers $ (i,j)\ (1\le i\lt j\le N) $ satisfy $ j-i=A _ i+A _ j $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A _ 1 $ $ A _ 2 $ $ \ldots $ $ A _ N $
Output Format
Output the answer.
Explanation/Hint
### Sample Explanation 1
For example, when $ (i,j)=(4,7) $ , we have $ j-i=7-4=3 $ and $ A _ i+A _ j=1+2=3 $ , so $ j-i=A _ i+A _ j $ .
In contrast, when $ (i,j)=(3,8) $ , we have $ j-i=8-3=5 $ and $ A _ i+A _ j=4+6=10 $ , so $ j-i\ne A _ i+A _ j $ .
Only the three pairs $ (i,j)=(1,9),(2,4),(4,7) $ satisfy the condition, so output `3`.
### Sample Explanation 2
There may be no pairs that satisfy the condition.
### Constraints
- $ 1\le N\le2\times10 ^ 5 $
- $ 1\le A _ i\le2\times10 ^ 5\ (1\le i\le N) $
- All input values are integers.