AT_abc420_c [ABC420C] Sum of Min Query

Description

You are given length- $ N $ integer sequences: $ A=(A_1,A_2,\ldots,A_N) $ and $ B=(B_1,B_2,\ldots,B_N) $ . You are given $ Q $ queries to process in order. The $ i $ -th query $ (1\le i\le Q) $ is described as follows: > You are given a character $ c_i $ and integers $ X_i,V_i $ . If $ c_i= $ `A`, change $ A_{X_i} $ to $ V_i $ ; if $ c_i= $ `B`, change $ B_{X_i} $ to $ V_i $ . Then, output $ \displaystyle \sum_{k=1}^N \min(A_k,B_k) $ .

Input Format

The input is given from Standard Input in the following format: > $ N $ $ Q $ $ A_1 $ $ A_2 $ $ \ldots $ $ A_N $ $ B_1 $ $ B_2 $ $ \ldots $ $ B_N $ $ c_1 $ $ X_1 $ $ V_1 $ $ c_2 $ $ X_2 $ $ V_2 $ $ \vdots $ $ c_Q $ $ X_Q $ $ V_Q $

Output Format

Output $ Q $ lines. The $ i $ -th line $ (1\le i\le Q) $ should contain the answer to the $ i $ -th query.

Explanation/Hint

### Sample Explanation 1 After the 1st query, $ A=(3,3,4,1),B=(2,7,1,8) $ . Therefore, output $ \displaystyle \min(3,2)+\min(3,7) + \min(4 , 1)+\min(1,8) = 7 $ on the 1st line. After the 2nd query, $ A=(3,3,4,1),B=(2,7,3,8) $ . Therefore, output $ \displaystyle \min(3,2)+\min(3,7) + \min(4 , 3)+\min(1,8) = 9 $ on the 2nd line. After the 3rd query, $ A=(7,3,4,1),B=(2,7,3,8) $ . Therefore, output $ \displaystyle \min(7,2)+\min(3,7) + \min(4 , 3)+\min(1,8) = 9 $ on the 3rd line. ### Constraints - $ 1\le N,Q \le 2 \times 10^5 $ - $ 1\le A_i,B_i \le 10^9 $ - $ c_i $ is either `A` or `B`. - $ 1\le X_i \le N $ - $ 1\le V_i \le 10^9 $ - All input values are integers.