AT_abc421_b [ABC421B] Fibonacci Reversed

Description

For a positive integer $ x $ , define $ f(x) $ as follows: - Let $ s_x $ be the string obtained by representing $ x $ in decimal notation (without leading zeros), and let $ \text{rev}(s_x) $ be the string obtained by reversing $ s_x $ . The value of $ f(x) $ is the integer obtained by interpreting $ \text{rev}(s_x) $ as a decimal representation of an integer. For example, when $ x=13 $ , we have $ \text{rev}(s_x)= $ `31`, so $ f(x)=31 $ ; when $ x=10 $ , we have $ \text{rev}(s_x)= $ `01`, so $ f(x)=1 $ . Particularly, for any positive integer $ x $ , the value of $ f(x) $ is a positive integer. You are given positive integers $ X $ and $ Y $ . Define a sequence of positive integers $ A=(a_1,a_2,\dots,a_{10}) $ as follows: - $ a_1 = X $ - $ a_2 = Y $ - $ a_i = f(a_{i-1}+a_{i-2})\ (i\geq 3) $ Find the value of $ a_{10} $ .

Input Format

The input is given from Standard Input in the following format: > $ X $ $ Y $

Output Format

Print the value of $ a_{10} $ .

Explanation/Hint

### Sample Explanation 1 The values of the elements of $ A $ are as follows: - $ a_1=1 $ - $ a_2=1 $ - $ a_3=2 $ - $ a_4=3 $ - $ a_5=5 $ - $ a_6=8 $ - $ a_7=31 $ - $ a_8=93 $ - $ a_9=421 $ - $ a_{10}=415 $ Thus, print $ 415 $ . ### Constraints - $ 1\leq X,Y \leq 10^5 $ - All input values are integers.