AT_abc425_b [ABC425B] Find Permutation 2
Description
You are given an integer sequence $ A=(A_1,A_2,\ldots,A_N) $ of length $ N $ . Here, each element of $ A $ is either $ -1 $ or an integer between $ 1 $ and $ N $ , inclusive.
Determine whether there exists an integer sequence $ P=(P_1,P_2,\ldots,P_N) $ of length $ N $ that satisfies all of the following conditions, and if it exists, find one.
- $ P $ is a permutation of $ (1,2,\ldots,N) $ .
- For $ i=1,2,\ldots,N $ , if $ A_i \neq -1 $ , then $ P_i=A_i $ holds.
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \ldots $ $ A_N $
Output Format
If there is no $ P $ that satisfies all conditions, output `No`.
Otherwise, output $ P $ that satisfies all conditions in the following format:
> Yes $ P_1 $ $ P_2 $ $ \ldots $ $ P_N $
If there are multiple $ P $ that satisfy all conditions, any of them may be output.
Explanation/Hint
### Sample Explanation 1
$ P=(3,1,2,4) $ satisfies all conditions.
Besides this, $ P=(1,3,2,4) $ or $ P=(4,3,2,1) $ also satisfies all conditions.
### Sample Explanation 2
There is no $ P $ that satisfies all conditions.
### Constraints
- $ 1\le N\le 10 $
- $ A_i=-1 $ or $ 1\le A_i \le N $
- All input values are integers.