AT_abc429_g [ABC429G] Sum of Pow of Mod of Linear
Description
You are given integers $ N,M,A,B,X,R $ .
Find the remainder when $ \displaystyle \sum_{k=0}^{N-1} X^{(Ak+B) \bmod M} $ is divided by $ R $ .
You are given $ T $ test cases, so find the answer for each of them.
Input Format
The input is given from Standard Input in the following format:
> $ T $ $ \text{case}_1 $ $ \text{case}_2 $ $ \vdots $ $ \text{case}_T $
Each test case $ \text{case}_i $ is given in the following format:
> $ N $ $ M $ $ A $ $ B $ $ X $ $ R $
Output Format
Print $ T $ lines.
On the $ i $ -th line, print the remainder when $ \displaystyle \sum_{k=0}^{N-1} X^{(Ak+B) \bmod M} $ is divided by $ R $ for the $ i $ -th test case.
Explanation/Hint
### Sample Explanation 1
Consider the first test case.
- When $ k=0 $ : $ \displaystyle X^{(Ak+B) \bmod M}=2^{(2\times 0+1) \bmod 5}=2^1=2 $ .
- When $ k=1 $ : $ \displaystyle X^{(Ak+B) \bmod M}=2^{(2\times 1+1) \bmod 5}=2^3=8 $ .
- When $ k=2 $ : $ \displaystyle X^{(Ak+B) \bmod M}=2^{(2\times 2+1) \bmod 5}=2^0=1 $ .
- When $ k=3 $ : $ \displaystyle X^{(Ak+B) \bmod M}=2^{(2\times 3+1) \bmod 5}=2^2=4 $ .
From the above, the desired value is the remainder when $ 2+8+1+4 $ is divided by $ 1000000000 $ , which is $ 15 $ . Therefore, print $ 15 $ on the $ 1 $ st line.
### Constraints
- $ 1\le T\le 100 $
- $ 1\le N,M,R\le 10^9 $
- $ 0\le A,B < M $
- $ 1\le X < R $
- All input values are integers.