AT_abc430_d [ABC430D] Neighbor Distance
Description
There is a number line, and initially person $ 0 $ is standing alone at coordinate $ 0 $ .
From now on, persons $ 1,2,\dots,N $ will arrive in this order and stand on the number line.
Person $ i $ stands at coordinate $ X_i $ . Here, $ X_i \ge 1 $ , and $ X_i $ is distinct for all persons.
Each time a person arrives, answer the following question.
- Suppose that currently $ r+1 $ persons $ 0,1,\dots,r $ are standing on the number line.
- Here, define $ d_i $ as the distance to the nearest other person from person $ i $ .
- More formally, $ \displaystyle d_i = \min_{0 \le j \le r, j \neq i} \vert X_i - X_j \vert $ .
- Find the sum of this $ d $ , that is, $ \displaystyle \sum_{i=0}^r d_i $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ X_1 $ $ X_2 $ $ \dots $ $ X_N $
Output Format
Print $ N $ lines.
The $ i $ -th line ( $ 1 \le i \le N $ ) should contain the answer to the question when person $ i $ arrives.
Explanation/Hint
### Sample Explanation 1
In this input, $ 10 $ persons arrive.
The first four persons are explained below.
- When person $ 1 $ arrives, there are persons at coordinates $ 0,5 $ .
- The required value is $ 5+5=10 $ .
- When person $ 2 $ arrives, there are persons at coordinates $ 0,2,5 $ .
- The required value is $ 2+2+3=7 $ .
- When person $ 3 $ arrives, there are persons at coordinates $ 0,2,5,7 $ .
- The required value is $ 2+2+2+2=8 $ .
- When person $ 4 $ arrives, there are persons at coordinates $ 0,2,4,5,7 $ .
- The required value is $ 2+2+1+1+2=8 $ .
### Constraints
- All input values are integers.
- $ 1 \le N \le 5 \times 10^5 $
- $ 1 \le X_i \le 10^9 $
- $ X_i \neq X_j $ if $ i \neq j $ .