AT_abc434_b [ABC434B] Bird Watching

Description

There are $ N $ birds of $ M $ types flying in the sky. The bird types are numbered $ 1,2,\dots,M $ . The $ N $ birds are numbered $ 1,2,\dots,N $ , and bird $ i $ is of type $ A_i $ and has size $ B_i $ . For every $ k=1,2,\dots,M $ , find the average size of the flying birds of type $ k $ . It is guaranteed that for every $ k=1,2,\dots,M $ , there is at least one bird of type $ k $ flying.

Input Format

The input is given from Standard Input in the following format: > $ N $ $ M $ $ A_1 $ $ B_1 $ $ A_2 $ $ B_2 $ $ \vdots $ $ A_N $ $ B_N $

Output Format

Output $ M $ lines. The $ k $ -th line ( $ 1 \le k \le M $ ) should contain the average size of birds of type $ k $ . Your answer will be considered correct if the absolute or relative error from the true value is at most $ 10^{-5} $ .

Explanation/Hint

### Sample Explanation 1 - The average size of birds of type $ 1 $ is $ (16+40+40)/3 = 32 $ . - The average size of birds of type $ 2 $ is $ 89 $ . - The average size of birds of type $ 3 $ is $ (77+8)/2 = 42.5 $ . - The average size of birds of type $ 4 $ is $ (92+99+77)/3 \approx 89.3333 $ . - The average size of birds of type $ 5 $ is $ 56 $ . ### Constraints - $ 1 \le M \le N \le 100 $ - $ 1 \le A_i \le M $ - $ 1 \le B_i \le 100 $ - There exists at least one bird of type $ k $ ( $ 1 \le k \le M $ ). - All input values are integers.