AT_abc435_b [ABC435B] No-Divisible Range
Description
You are given a sequence of positive integers $ A=(A_1,A_2,\ldots,A_N) $ of length $ N $ .
Find the number of pairs of integers $ (l,r) $ satisfying $ 1\leq l\leq r\leq N $ that satisfy the following condition:
> For every integer $ i $ satisfying $ l\leq i\leq r $ , $ A_i $ is **not** a divisor of $ A_l+A_{l+1}+\cdots+A_r $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ A_1 $ $ A_2 $ $ \ldots $ $ A_N $
Output Format
Output the answer.
Explanation/Hint
### Sample Explanation 1
We have $ A=(8,6,10,5,7) $ .
For example, $ (l,r)=(1,2) $ satisfies the condition because $ A_l+A_{l+1}+\cdots+A_r=A_1+A_2=14 $ , and neither $ A_1=8 $ nor $ A_2=6 $ is a divisor of $ 14 $ .
On the other hand, $ (l,r)=(1,3) $ does not satisfy the condition because $ A_l+A_{l+1}+\cdots+A_r=A_1+A_2+A_3=24 $ , and $ A_1=8 $ is a divisor of $ 24 $ .
The pairs that satisfy the condition are $ (l,r)=(1,2), (1,4), (2,3), (2,4), (3,5), (4,5) $ , which is six pairs, so output $ 6 $ .
### Constraints
- $ 1 \leq N \leq 50 $
- $ 1 \leq A_i \leq 1000 $
- All input values are integers.