AT_abc436_b [ABC436B] Magic Square
Description
You are given an odd number $ N $ that is at least $ 3 $ .
There is a grid with $ N $ rows and $ N $ columns, where all cells are initially empty. Now, you will write integers in each cell of this grid according to the following procedure. Let $ (i,j) $ denote the cell at the $ (i+1) $ -th row from the top and $ (j+1) $ -th column from the left ( $ 0\leq i
Input Format
The input is given from Standard Input in the following format:
> $ N $
Output Format
Let $ a_{i,j} $ be the integer written in cell $ (i,j) $ , and print it in the following format:
> $ a_{0,0} $ $ a_{0,1} $ $ \dots $ $ a_{0,N-1} $ $ \vdots $ $ a_{N-1,0} $ $ a_{N-1,1} $ $ \dots $ $ a_{N-1,N-1} $
Explanation/Hint
### Sample Explanation 1
Integers are written in each cell as follows:
1. Write $ 1 $ in cell $ (0,\frac{3-1}{2})=(0,1) $ .
2. Cell $ ((0-1) \bmod 3, (1+1) \bmod 3)=(2,2) $ is empty, so write $ 2 $ there.
3. Cell $ ((2-1) \bmod 3, (2+1) \bmod 3)=(1,0) $ is empty, so write $ 3 $ there.
4. Cell $ ((1-1) \bmod 3, (0+1) \bmod 3)=(0,1) $ is not empty, so write $ 4 $ in cell $ ((1+1) \bmod 3,0)=(2,0) $ .
5. $ \vdots $
### Constraints
- $ 3\leq N \leq 99 $
- $ N $ is an odd number.