AT_abc436_g [ABC436G] Linear Inequation
Description
You are given a length- $ N $ sequence of positive integers $ A=(A _ 1,A _ 2,\ldots,A _ N) $ and a positive integer $ M $ .
Find the number of length- $ N $ sequences of non-negative integers $ x=(x _ 1,x _ 2,\ldots,x _ N) $ that satisfy the following condition:
- $ \displaystyle\sum _ {i=1} ^ NA _ ix _ i\le M $
The number can be very large, so find it modulo $ 998244353 $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ M $ $ A _ 1 $ $ A _ 2 $ $ \ldots $ $ A _ N $
Output Format
Print the number, modulo $ 998244353 $ , of non-negative integer sequences that satisfy the condition.
Explanation/Hint
### Sample Explanation 1
The sequences $ x $ that satisfy the condition are the following $ 10 $ : $ (0,0,0,0),(0,0,0,1),(0,0,0,2),(0,0,0,3),(0,0,1,0),(0,0,1,1),(0,0,2,0),(0,1,0,0),(0,1,0,1),(1,0,0,0) $ .
Thus, print `10`.
### Sample Explanation 3
There are $ 1000000008 $ sequences $ x $ that satisfy the condition.
Print this modulo $ 998244353 $ , which is $ 1755655 $ .
### Constraints
- $ 1\le N\le100 $
- $ 1\le A _ i\le100\ (1\le i\le N) $
- $ 1\le M\le10 ^ {18} $
- All input values are integers.