AT_abc437_d [ABC437D] Sum of Differences

Description

You are given a length- $ N $ sequence of positive integers $ A = (A_1, A_2, \dots, A_N) $ and a length- $ M $ sequence of positive integers $ B = (B_1, B_2, \dots, B_M) $ . Find the value of $ \displaystyle \sum_{i=1}^{N} \sum_{j=1}^{M} |A_i - B_j| $ , modulo $ 998244353 $ .

Input Format

The input is given from Standard Input in the following format: > $ N $ $ M $ $ A_1 $ $ A_2 $ $ \cdots $ $ A_N $ $ B_1 $ $ B_2 $ $ \cdots $ $ B_M $

Output Format

Output the answer in one line.

Explanation/Hint

### Sample Explanation 1 The answer is $ |1-3| + |1-1| + |6-3| + |6-1| + |9-3| + |9-1| + |2-3| + |2-1| = 2+0+3+5+6+8+1+1 = 26 $ . ### Constraints - $ 1 \leq N,M \leq 3 \times 10^5 $ - $ 1 \leq A_i, B_j < 998244353 $ - All input values are integers.