AT_abc438_f [ABC438F] Sum of Mex
Description
You are given a tree $ T $ with $ N $ vertices. The vertices are numbered from $ 0 $ to $ N-1 $ , and the $ i $ -th edge $ (1\le i\le N-1) $ bidirectionally connects vertices $ u_i $ and $ v_i $ . (Note that vertex numbers are 0-indexed and edge numbers are 1-indexed.)
For a pair of integers $ (i,j) $ where $ 0 \leq i,j < N $ , define $ f(i,j) $ as follows:
- The vertex number of the vertex with the smallest number among the vertices **not included** in the path from vertex $ i $ to vertex $ j $ in tree $ T $ .
- Here, if the path from vertex $ i $ to vertex $ j $ includes all vertices from vertex $ 0 $ to vertex $ N-1 $ , let $ f(i,j)=N $ .
Note that the path from vertex $ i $ to vertex $ j $ in tree $ T $ includes vertices $ i $ and $ j $ .
Find the value of $ \displaystyle \sum_{0\le i \le j < N} f(i,j) $ .
Input Format
The input is given from Standard Input in the following format:
> $ N $ $ u_1 $ $ v_1 $ $ u_2 $ $ v_2 $ $ \vdots $ $ u_{N-1} $ $ v_{N-1} $
Output Format
Output the value of $ \displaystyle \sum_{0\le i \le j < N} f(i,j) $ .
Explanation/Hint
### Sample Explanation 1
We have $ f(0,0)=1,f(0,1)=2,f(1,1)=0 $ . Thus, output $ 1+2+0=3 $ .
### Constraints
- $ 2\le N\le 2\times 10^5 $
- $ 0\le u_i < v_i < N $
- The graph given in the input is a tree.
- All input values are integers.